搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含气泡液体中气泡振动的研究

王勇 林书玉 莫润阳 张小丽

引用本文:
Citation:

含气泡液体中气泡振动的研究

王勇, 林书玉, 莫润阳, 张小丽

Vibration of the bubble in bubbly liquids

Wang Yong, Lin Shu-Yu, Mo Run-Yang, Zhang Xiao-Li
PDF
导出引用
  • 研究了含气泡液体中单个气泡在驱动声场一定情况下的振动过程. 让每次驱动声场作用的时间特别短, 使气泡半径发生微小变化后再将其变化反馈到气泡群对驱动声场的散射作用中去, 从而可以得到某单个气泡周围受气泡散射影响后的声场, 接着再让气泡在该声场作用下做短时振动, 如此反复. 通过这样的方法, 研究了液体中单个气泡的振动情况并对其半径变化进行了数值模拟, 结果发现, 在液体中含有大量气泡的情况下, 某单个气泡的振动过程明显区别于液体中只有一个气泡的情况. 由于大量气泡和驱动声场的相互作用, 使气泡半径的变化存在多种不同的振动情况, 在不同的气泡大小和含量的情况下, 半径变化过程分别表现为: 在平衡位置附近振荡的过程; 周期性的空化过程; 一次空化过程后保持某一大小振荡的过程; 增长后维持某一大小振荡的过程等. 所以, 对于含气泡液体中气泡振动的研究, 在驱动声场一定的情况下, 必须考虑气泡含量的因素.
    The vibration of bubbles in bubbly liquids has been studied when the driving sound field is fixed. The radius of the bubble will change when the bubble is driven by a driving acoustic field for a short time. This small change of radius is then fed back to the scattering process of the bubbles driven by the driving acoustic field. Thus the compound acoustic field including the scattered field of the bubble can be obtained. Then the bubble is again driven into vibration for a short time. By repeating the same procedure, the bubble vibration and its radius variation are simulated by a numerical method. It is shown that in the case of numerous bubbles in the liquid the vibration of a bubble is different from the case of only a single bubble in it. Because numerous bubbles will show interactions between one another, the radius of the bubble will change in different manner. For different size and content of bubbles, the radius of the bubble changes according to the following rules. The radius will oscillate in the vicinity of the equilibrium position; the radius oscillation shows a periodic cavitation process; the radius will vibrate during one cycle of cavitation; then, the radius will increase and oscillate in the vicinity of a certain value. Therefore, it is necessary that the bubble content should be considered in analyzing the vibration of the bubble in a bubbly liquid under a driving sound field.
    • 基金项目: 陕西师范大学研究生培养创新基金(批准号: 2012CXB014)和国家自然科学基金(批准号: 11174192, 11274216)资助的课题.
    • Funds: Project supported by the Innovation Funds of Graduate Programs, Shaanxi Normal University (Grant No. 2012CXB014) and the National Natural Science Foundation of China (Grant Nos. 11174192, 11274216).
    [1]

    Ashokkumar M 2011 UltrasonSonochem 18 864

    [2]

    Ashokkumar M, Lee J, Kentish J, Grieser F 2007 UltrasonSonochem 14 470

    [3]

    Chen W Z, Huang W, Liu Y N, Gao X X 2006 Sci Sin-Phys Mech Astron 36 113 (in Chinese) [陈伟中, 黄威, 刘亚楠, 高贤娴 2006 中国科学, 物理学, 力学, 天文学 textbf36 113]

    [4]

    Ying C F 2007 Sci. Sin. Phys. Mec. Astron 37 129 (in Chinese) [应崇福 2007 中国科学G辑: 物理学, 力学, 天文学 37 129]

    [5]

    An Y 2011 Sci. Sin. Phys. Mech. Astron 41 343 (in Chinese) [安宇 2011 中国科学: 物理学, 力学, 天文学 41 343]

    [6]

    Cavalieri F, Zhou M, Ashokkumar M 2010 Curr. Top. Med. Chem. 10 1198

    [7]

    Wu J, Nyborg W L 2008 Adv. Drug. Deliver. Rev. 60 1103

    [8]

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302 (in Chinese) [沈壮志, 林书玉 2011 物理学报 60 104302]

    [9]

    Mettin R, Doinikov A A 2009 Appl. Acoust. 70 1330

    [10]

    Thiemann A, Nowak T, Mettin R, Holsteyns F, Lippert A 2011 Ultrason Sonochem 18 595

    [11]

    Luo X N, Zhao L J, Feng C Q, Su X Y, Zhang J J 2011 Journal of Engineering Thermophysics 32 17 (in Chinese) [罗贤能, 赵良举, 奉策强, 苏晓燕, 张佳佳 2011 工程热物理学报 32 17]

    [12]

    Neppiras E A, Noltingk B E 1951 Proc. Phys. Soc. B 64 1032

    [13]

    Merouani S, Hamdaoui O, Rezgui Y, Guemini M 2013 Ultrason. Sonochem 20 815

    [14]

    Brotchie A, Grieser F, Ashokkumar M 2009 Phys. Rev. Lett. 102 084302

    [15]

    Wu X J, Chahine G L 2010 J Hydrodyn. 22 330

    [16]

    Laakkonen M Honkanen M Saarenrinne P, Aittamaa J 2005 Chem. Eng. J 109 37

    [17]

    Lee J, Kentish S, Matula T J Ashokkumar M 2005 J. Phys. Chem. B 109 16860

    [18]

    Ashokkumar M, Lee J, Kentish S, Grieser F, Matula T J 2004 J. Acoust. Soc. Am 116 2541

    [19]

    Lee J, Kentish S Ashokkumar M 2005 J. Phys. Chem. B 109 14595

    [20]

    Qian Z W 1981 Acta Phys. Sin. 30 442 (in Chinese) [钱祖文 1981 物理学报 30 442]

    [21]

    Shen Z Z, Wu S J 2012 Acta Phys. Sin. 61 244301 (in Chinese) [沈壮志, 吴胜举 2012 物理学报 61 244301]

    [22]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457

    [23]

    Foldy L L 1945 Phys. Rev. 67 107

  • [1]

    Ashokkumar M 2011 UltrasonSonochem 18 864

    [2]

    Ashokkumar M, Lee J, Kentish J, Grieser F 2007 UltrasonSonochem 14 470

    [3]

    Chen W Z, Huang W, Liu Y N, Gao X X 2006 Sci Sin-Phys Mech Astron 36 113 (in Chinese) [陈伟中, 黄威, 刘亚楠, 高贤娴 2006 中国科学, 物理学, 力学, 天文学 textbf36 113]

    [4]

    Ying C F 2007 Sci. Sin. Phys. Mec. Astron 37 129 (in Chinese) [应崇福 2007 中国科学G辑: 物理学, 力学, 天文学 37 129]

    [5]

    An Y 2011 Sci. Sin. Phys. Mech. Astron 41 343 (in Chinese) [安宇 2011 中国科学: 物理学, 力学, 天文学 41 343]

    [6]

    Cavalieri F, Zhou M, Ashokkumar M 2010 Curr. Top. Med. Chem. 10 1198

    [7]

    Wu J, Nyborg W L 2008 Adv. Drug. Deliver. Rev. 60 1103

    [8]

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302 (in Chinese) [沈壮志, 林书玉 2011 物理学报 60 104302]

    [9]

    Mettin R, Doinikov A A 2009 Appl. Acoust. 70 1330

    [10]

    Thiemann A, Nowak T, Mettin R, Holsteyns F, Lippert A 2011 Ultrason Sonochem 18 595

    [11]

    Luo X N, Zhao L J, Feng C Q, Su X Y, Zhang J J 2011 Journal of Engineering Thermophysics 32 17 (in Chinese) [罗贤能, 赵良举, 奉策强, 苏晓燕, 张佳佳 2011 工程热物理学报 32 17]

    [12]

    Neppiras E A, Noltingk B E 1951 Proc. Phys. Soc. B 64 1032

    [13]

    Merouani S, Hamdaoui O, Rezgui Y, Guemini M 2013 Ultrason. Sonochem 20 815

    [14]

    Brotchie A, Grieser F, Ashokkumar M 2009 Phys. Rev. Lett. 102 084302

    [15]

    Wu X J, Chahine G L 2010 J Hydrodyn. 22 330

    [16]

    Laakkonen M Honkanen M Saarenrinne P, Aittamaa J 2005 Chem. Eng. J 109 37

    [17]

    Lee J, Kentish S, Matula T J Ashokkumar M 2005 J. Phys. Chem. B 109 16860

    [18]

    Ashokkumar M, Lee J, Kentish S, Grieser F, Matula T J 2004 J. Acoust. Soc. Am 116 2541

    [19]

    Lee J, Kentish S Ashokkumar M 2005 J. Phys. Chem. B 109 14595

    [20]

    Qian Z W 1981 Acta Phys. Sin. 30 442 (in Chinese) [钱祖文 1981 物理学报 30 442]

    [21]

    Shen Z Z, Wu S J 2012 Acta Phys. Sin. 61 244301 (in Chinese) [沈壮志, 吴胜举 2012 物理学报 61 244301]

    [22]

    Prosperetti A, Lezzi A 1986 J. Fluid Mech. 168 457

    [23]

    Foldy L L 1945 Phys. Rev. 67 107

  • [1] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [2] 许龙, 汪尧. 双泡耦合声空化动力学过程模拟. 物理学报, 2023, 72(2): 024303. doi: 10.7498/aps.72.20221571
    [3] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [4] 周剑宏, 童宝宏, 王伟, 苏家磊. 油滴撞击油膜层内气泡的变形与破裂过程的数值模拟. 物理学报, 2018, 67(11): 114701. doi: 10.7498/aps.67.20180133
    [5] 王婷, 崔志文, 刘金霞, 王克协. 含少量气泡流体饱和孔隙介质中的弹性波. 物理学报, 2018, 67(11): 114301. doi: 10.7498/aps.67.20180209
    [6] 付成花. 微纳粒子光学散射分析. 物理学报, 2017, 66(9): 097301. doi: 10.7498/aps.66.097301
    [7] 梁煜, 关奔, 翟志刚, 罗喜胜. 激波汇聚效应对球形气泡演化影响的数值研究. 物理学报, 2017, 66(6): 064701. doi: 10.7498/aps.66.064701
    [8] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [9] 马艳, 林书玉, 鲜晓军. 次Bjerknes力作用下气泡的体积振动和散射声场. 物理学报, 2016, 65(1): 014301. doi: 10.7498/aps.65.014301
    [10] 王勇, 林书玉, 张小丽. 含气泡液体中的非线性声传播. 物理学报, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [11] 胡静, 林书玉, 王成会, 李锦. 超声波作用下泡群的共振声响应. 物理学报, 2013, 62(13): 134303. doi: 10.7498/aps.62.134303
    [12] 王勇, 林书玉, 张小丽. 声波在含气泡液体中的线性传播. 物理学报, 2013, 62(6): 064304. doi: 10.7498/aps.62.064304
    [13] 徐波, 王树林, 李生娟, 李来强. 超声强化合成MgFe2O4纳米颗粒及其机理研究. 物理学报, 2012, 61(3): 030703. doi: 10.7498/aps.61.030703
    [14] 王海华, 孙贤明. 两种按比例混合颗粒系的多次散射模拟. 物理学报, 2012, 61(15): 154204. doi: 10.7498/aps.61.154204
    [15] 赵太飞, 柯熙政. Monte Carlo方法模拟非直视紫外光散射覆盖范围. 物理学报, 2012, 61(11): 114208. doi: 10.7498/aps.61.114208
    [16] 卢义刚, 吴雄慧. 双泡超声空化计算分析. 物理学报, 2011, 60(4): 046202. doi: 10.7498/aps.60.046202
    [17] 王红霞, 周战荣, 张清华, 马进, 刘代志. 纳米碳纤维红外消光数值计算. 物理学报, 2010, 59(9): 6111-6117. doi: 10.7498/aps.59.6111
    [18] 王清华, 张颖颖, 来建成, 李振华, 贺安之. Mie理论在生物组织散射特性分析中的应用. 物理学报, 2007, 56(2): 1203-1207. doi: 10.7498/aps.56.1203
    [19] 贾亚青, 梁艳梅, 朱晓农. 光学相干层析信号的模拟分析与计算. 物理学报, 2007, 56(7): 3861-3866. doi: 10.7498/aps.56.3861
    [20] 陈 谦, 邹欣晔, 程建春. 超声波声孔效应中气泡动力学的研究. 物理学报, 2006, 55(12): 6476-6481. doi: 10.7498/aps.55.6476
计量
  • 文章访问数:  5851
  • PDF下载量:  928
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-07
  • 修回日期:  2013-03-25
  • 刊出日期:  2013-07-05

/

返回文章
返回