搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阻抗匹配条件下磁控管的注入锁频

岳松 张兆传 高冬平

引用本文:
Citation:

阻抗匹配条件下磁控管的注入锁频

岳松, 张兆传, 高冬平

Injection-locking of magnetrons with matched impedance

Yue Song, Zhang Zhao-Chuan, Gao Dong-Ping
PDF
导出引用
  • 单只磁控管输出功率不能满足大规模工业应用, 需要对多只磁控管进行相干功率合成. 为解决普通磁控管相干功率合成所需的相位一致性, 需要对普通磁控管引入注入锁频技术, 以保障工作频率和相位差的稳定性. 本文在阻抗匹配的条件下, 结合磁控管稳定振荡的条件, 从等效电路的角度出发对磁控管注入锁频原理进行分析, 给出了在小注入比和大注入比情况下磁控管的注入锁频理论, 大注入比情况比小注入比情况给出了更大的锁频带宽. 采用MATLAB对理论方程进行解析求解, 同时通过三维粒子仿真软件对锁频理论进行了对比验证, 得出了在不同注入比下磁控管的锁频带宽和相位差微分方程, 给出了在不同初始相位下的相位差变化曲线, 得到了A6磁控管在自由振荡和注入锁频工作下三维模拟仿真的输出功率、频率和波形. 模拟结果表明, 在两种情形预测的锁频带宽内, 磁控管均能被锁定并稳定工作, 在大注入比下大注入比情况比小注入比情况更为准确.
    Coherent power-combining by using several magnetrons is essential because the output power of one single magnetron cannot meet the need of large-scale industrial applications. In order to obtain phase coherence condition of the power-combining of normal magnetrons, injection-locking technology should be adopted to make sure the stability of the operating frequency and phase difference. Under impedance matching conditions, equivalent circuit of injection-locked magnetron is analyzed with the conditions of the magnetron stable frequency. The small injection-ratio and large injection-ratio situations of the injection-locked magnetrons are both derived. Furthermore, large injection-ratio situation indicates a greater frequency-locked bandwidth than small injection-ratio situation. Theoretical results are analyzed by MATLAB and injection-locked theory is verified by three-dimensional particle-in-cell simulation. The frequency-locked bandwidth and phase differential equation are given and curves of the phase difference are drawn for different initial phases. Output power and frequency of A6 magnetron are obtained by simulation under both free and injection-locked oscillation conditions. Simulation results show that magnetron can be locked and working stably in frequency-locked bandwidth predicted by both situations. Moreover, in the large injection ratio status the large injection-ratio situation is more accurate than the small injection-ratio situation.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2013CB328901)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB328901).
    [1]

    Adler R 1946 Proc. Ire. 34 6

    [2]

    Slater J C 1950 Microwave Electronics (New York: Van Nostrand) pp205-210

    [3]

    David E E 1952 Proc. Ire. 40 6

    [4]

    David E E 1961 Crossed Field Microwave Devices (Vol. 2) (New York and London: Academic Press) P375

    [5]

    Behzad Razavi 2004 IEEE J. Solid-State Circuits 39 9

    [6]

    Woo W, Benford J, Fittinghoff D, Harteneck B, Price D, Smith R, Sze H 1988 J. Appl. Phys. 65 2

    [7]

    Benford J, Sze H, Woo W, Smith R R, Harteneck B 1989 Phys. Rev. Lett. 62 8

    [8]

    Henry S, Smith R R, Benford J N, Harteneck B D 1992 IEEE Trans. Electromagn. Compat. 34 3

    [9]

    Treado T A, Brown P D, HansenT A, Aiguier D J 1994 IEEE Trans. Plasma Sci. 22 5

    [10]

    Zhu X Y, Jen L, Liu Q X, Du X S 1996 Rev. Sci. Instrum. 67 5

    [11]

    Zhang Z T 1981 Principles of Microwave Tubes (Beijing: National Defence Industry Press) p105 (in Chinese) [张兆镗 1981 微波电子管原理 (北京: 国防工业出版社) 第105页]

    [12]

    Deng X l, Liu Y G, Li W 2010 Journal of Microwaves 26 Supplement (in Chinese) [邓小龙, 刘永贵, 李伟 2010 微波学报 26 增刊]

    [13]

    Chen X, Esterson M, Lindsay P A 1996 SPIE 2843 47

    [14]

    Kim J I, Won J H, Ha H J, Shon J C, Park G S 2004 IEEE Trans.Plasma Sci. 32 5

    [15]

    Bruce G, Larry L, David S, Gary W 1995 Computer Physics Communications 87 1

  • [1]

    Adler R 1946 Proc. Ire. 34 6

    [2]

    Slater J C 1950 Microwave Electronics (New York: Van Nostrand) pp205-210

    [3]

    David E E 1952 Proc. Ire. 40 6

    [4]

    David E E 1961 Crossed Field Microwave Devices (Vol. 2) (New York and London: Academic Press) P375

    [5]

    Behzad Razavi 2004 IEEE J. Solid-State Circuits 39 9

    [6]

    Woo W, Benford J, Fittinghoff D, Harteneck B, Price D, Smith R, Sze H 1988 J. Appl. Phys. 65 2

    [7]

    Benford J, Sze H, Woo W, Smith R R, Harteneck B 1989 Phys. Rev. Lett. 62 8

    [8]

    Henry S, Smith R R, Benford J N, Harteneck B D 1992 IEEE Trans. Electromagn. Compat. 34 3

    [9]

    Treado T A, Brown P D, HansenT A, Aiguier D J 1994 IEEE Trans. Plasma Sci. 22 5

    [10]

    Zhu X Y, Jen L, Liu Q X, Du X S 1996 Rev. Sci. Instrum. 67 5

    [11]

    Zhang Z T 1981 Principles of Microwave Tubes (Beijing: National Defence Industry Press) p105 (in Chinese) [张兆镗 1981 微波电子管原理 (北京: 国防工业出版社) 第105页]

    [12]

    Deng X l, Liu Y G, Li W 2010 Journal of Microwaves 26 Supplement (in Chinese) [邓小龙, 刘永贵, 李伟 2010 微波学报 26 增刊]

    [13]

    Chen X, Esterson M, Lindsay P A 1996 SPIE 2843 47

    [14]

    Kim J I, Won J H, Ha H J, Shon J C, Park G S 2004 IEEE Trans.Plasma Sci. 32 5

    [15]

    Bruce G, Larry L, David S, Gary W 1995 Computer Physics Communications 87 1

  • [1] 杨璇, 王胤, 王登龙, 丁建文. 点间隧穿调控五能级M型三量子点电磁感应透明介质中的孤子碰撞性质. 物理学报, 2020, 69(17): 174203. doi: 10.7498/aps.69.20200141
    [2] 漆世锴, 王小霞, 王兴起, 胡明玮, 刘理, 曾伟. 大功率磁控管用新型Y2Hf2O7陶瓷阴极研究. 物理学报, 2020, 69(3): 037901. doi: 10.7498/aps.69.20191496
    [3] 杨温渊, 董烨, 董志伟. 全腔输出相对论磁控管输出模式转换结构的理论设计和数值模拟. 物理学报, 2018, 67(18): 188401. doi: 10.7498/aps.67.20180358
    [4] 牛海莎, 祝连庆, 宋建军, 董明利, 娄小平. 激光器内腔频差对双折射外腔激光回馈系统输出影响的理论及实验研究. 物理学报, 2018, 67(15): 154201. doi: 10.7498/aps.67.20180230
    [5] 杨温渊, 董烨, 董志伟. 新型全腔输出半透明阴极相对论磁控管的理论和数值研究. 物理学报, 2016, 65(24): 248401. doi: 10.7498/aps.65.248401
    [6] 漆世锴, 王小霞, 罗积润, 赵青兰, 李云. 磁控管用新型Y2O3-Gd2O3-HfO2浸渍W基直热式阴极研究. 物理学报, 2016, 65(5): 057901. doi: 10.7498/aps.65.057901
    [7] 黄翔东, 孟天伟, 丁道贤, 王兆华. 前后向子分段相位差频率估计法. 物理学报, 2014, 63(21): 214304. doi: 10.7498/aps.63.214304
    [8] 史迪夫, 王弘刚, 李伟, 钱宝良. 扇形腔旭日型磁控管结构的理论分析与数字模拟. 物理学报, 2013, 62(15): 151101. doi: 10.7498/aps.62.151101
    [9] 吴波, 于晋龙, 王文睿, 韩丙辰, 郭精忠, 罗俊, 王菊, 张晓媛, 刘毅, 杨恩泽. 基于注入半导体激光器的微波副载波相位调制信号产生. 物理学报, 2012, 61(5): 054208. doi: 10.7498/aps.61.054208
    [10] 李伟, 刘永贵, 杨建华. 同轴辐射相对论磁控管的功率合成研究. 物理学报, 2012, 61(3): 038401. doi: 10.7498/aps.61.038401
    [11] 罗群, 黄林海, 顾乃庭, 李斐, 饶长辉. 相位差波前检测方法应用于平移误差检测的实验研究. 物理学报, 2012, 61(6): 069501. doi: 10.7498/aps.61.069501
    [12] 李斐, 饶长辉. 基于相位差混合处理方法的高分辨力成像技术. 物理学报, 2012, 61(2): 029502. doi: 10.7498/aps.61.029502
    [13] 李伟, 刘永贵. 类磁控管结构的理论分析. 物理学报, 2012, 61(2): 021103. doi: 10.7498/aps.61.021103
    [14] 李斐. 相位差图像复原技术研究. 物理学报, 2012, 61(23): 230203. doi: 10.7498/aps.61.230203
    [15] 李伟, 刘永贵. 2工作模式下可调谐同轴辐射相对论磁控管的模拟研究. 物理学报, 2011, 60(12): 128403. doi: 10.7498/aps.60.128403
    [16] 李政颖, 王洪海, 姜宁, 程松林, 赵磊, 余鑫. 光纤气体传感器解调方法的研究. 物理学报, 2009, 58(6): 3821-3826. doi: 10.7498/aps.58.3821
    [17] 颜森林. 注入半导体激光器混沌调制性能与内部相位键控编码方法研究. 物理学报, 2006, 55(12): 6267-6274. doi: 10.7498/aps.55.6267
    [18] 颜森林. 注入半导体激光器混沌相位周期控制方法研究. 物理学报, 2006, 55(10): 5109-5114. doi: 10.7498/aps.55.5109
    [19] 朱宝强, 夏宗炬, 邹英华. 锂蒸汽中的注入参量振荡. 物理学报, 1991, 40(6): 926-934. doi: 10.7498/aps.40.926
    [20] 潘少华, 汤晓, 冯宝华. 染料激光器的注入锁频. 物理学报, 1981, 30(2): 291-296. doi: 10.7498/aps.30.291
计量
  • 文章访问数:  5198
  • PDF下载量:  540
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-16
  • 修回日期:  2013-05-24
  • 刊出日期:  2013-09-05

/

返回文章
返回