搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带电多孔二氧化硅纳米颗粒在硫醇/磷脂混合双层膜上的非特异性吸附

陆乃彦 元冰 杨恺

引用本文:
Citation:

带电多孔二氧化硅纳米颗粒在硫醇/磷脂混合双层膜上的非特异性吸附

陆乃彦, 元冰, 杨恺

Nonspecific adsorption of charged mesoporous nanoparticles on supported thiol/lipid hybrid bilayers

Lu Nai-Yan, Yuan Bing, Yang Kai
PDF
导出引用
  • 制备了表面带阴/阳离子的多孔二氧化硅纳米颗粒, 通过QCM-D研究了颗粒在不同pH值环境下与磷脂膜的非特异性吸附情况. 结果表明, NH2-MSN 在48的pH值范围内与磷脂膜相互吸引, 而COOH-MSN由于与磷脂膜的电性始终保持一致而无法发生吸附现象. 本研究能够帮助理解和预测纳米颗粒与细胞膜间的相互作用, 为药物输运提供载体, 有助于多孔二氧化硅纳米颗粒在药物输运体系中的应用.
    Mesoporous silica nanoparticles (MSN) with cationic and anionic surface charges were synthesized, Their adsorption behaviors to the supported lipid membranes at different pH values were also studied using QCM-D. We found that NH2-MSN could be adsorbed onto the membrane at pH values from 4 to 8, while the adsorption of COOH-MSN onto the membrane could not occur due to its charge being always the same as that of the membrane at any pH values. These results might provide the information for understanding and predicting the interactions between nanoparticles and cell membranes, and could be effectively used in drug delivery systems and disease treatment.
    • 基金项目: 国家自然科学基金(批准号: 11104192, 21106114);教育部科学技术研究重点项目(批准号: 210208)和云南省应用基础研究计划(批准号: 2010CD091)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104192, 21106114), the Key Project of Chinese Ministry of Education, China (Grant No. 210208), and the Applied Basic Research Program of Yunnan Province, China (Grant No. 2010CD091).
    [1]

    Yousaf M Z, Yu J, Hou Y L, Gao S 2013 Chin. Phys. B 22 058702

    [2]

    Liu J W, Jiang X M, Ashley C, Brinker C J 2009 J. Am. Chem. Soc. 131 7567

    [3]

    Giri S, Trewyn B G, Stellmaker M P, Lin V S Y 2005 Angew. Chem. Int. Ed. 44 5038

    [4]

    Hong C Y, Li X, Pan C Y 2008 J. Phys. Chem. C 112 15320

    [5]

    Liu R, Zhang Y, Zhao X, Agarwal A, Mueller L J, Feng P Y 2010 J. Am. Chem. Soc. 132 1500

    [6]

    Ashley C E, Carnes E C, Phillips G K, Padilla D, Durfee P N, Brown P A, Hanna T N, Liu J W, Phillips B, Carter M B, Carroll N J, Jiang X M, Dunphy D R, Willman C L, Petsev D N, Evans D G, Parikh A N, Chackerian B, Wharton W, Peabody D S, Brinker C J 2011 Nature Materials 10 389

    [7]

    Rosenholm J M, Peuhu E, Eriksson J E, Sahlgren C, Lindén M 2009 Nano Lett. 9 3308

    [8]

    Liong M, Lu J, Kovochich M, Xia T, Ruehm S G, Nel A E, Tamanoi F, Zink J I 2008 ACS Nano. 2 889

    [9]

    Lei J M, L L, Liu L, Xu X L 2011 Acta Phys. Sin. 60 017501 (in Chinese) [雷洁梅, 吕柳, 刘玲, 许小亮 2011 物理学报 60 017501]

    [10]

    Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz-Javier A, Gaub H E, Stölzle S, Fertig N, Parak W J 2005 Nano Lett. 5 2331

    [11]

    Cho E C, Xie J, Wurm P A, Xia Y 2009 Nano Lett. 9 1080

    [12]

    Arvizo R R, Miranda O R, Thompson M A, Pabelick C M, Bhattacharya R, Robertson J D, Rotello V M, Prakash Y S, Mukherjee P 2010 Nano Lett. 10 2543

    [13]

    Xia T, Kovochich M, Liong M, Zink J I, Nel A E 2008 ACS Nano. 2 85

    [14]

    Wilhelm C, Billotey C, Roger J, Pons J N, Bacri J C, Gazeau F 2003 Biomaterials 24 1001

    [15]

    Ryman-Rasmussen J P, Riviere J E, Monteiro-Riviere N A 2007 Nano Lett. 7 1344

    [16]

    Zhang X F, Yang S H 2011 Langmuir 27 2528

    [17]

    Rodahl M, Höök F, Fredriksson C, Keller C A, Krozer A, Brzezinski P, Voinova M, Kasemo B 1997 Faraday Discuss 107 229

    [18]

    Voinova M V, Jonson M, Kasemo B 2002 Biosensors and Bioelectronics 17 835

    [19]

    Richter R, Mukhopadhyay A, Brisson A 2003 Biophys. J 85 3035

    [20]

    Lu N Y, Yang K, Yuan B, Ma Y Q 2012 J. Phys. Chem. B 116 9432

    [21]

    Plant A L, Gueguechkeri M, Yap W 1994 Biophys. J. 67 1126

    [22]

    Plant A L 1999 Langmuir 15 5128

    [23]

    Jiang Z Y, Zhang G L, Ma J, Zhu T 2013 Acta Phys. Sin. 62 018701 (in Chinese) [蒋中英, 张国梁, 马晶, 朱涛 2013 物理学报 62 018701]

    [24]

    Möller K, Kobler J, Bein T 2007 Adv. Funct. Mater. 17 605

    [25]

    Kecht J, Schlossbauer A, Bein T 2008 Chem. Mater. 20 7207

    [26]

    Cauda V, Engelke H, Sauer A, Arcizet D, Bräuchle C, Rädler J, Bein T 2010 Nano Lett. 10 2484

    [27]

    Park C, Oh K, Lee S C, Kim C 2007 Angew. Chem. Int. Ed. 46 1455

    [28]

    Academic A U 1991 Nature 354 120

    [29]

    Diao P, Jiang D L, Cui X L, Gu D P, Tong R T, Zhong B 1999 Bioelectrochem. Bioenerg. 48 469

    [30]

    Ding L, Li J H, Dong S J, Wang E K 1996 J. Electroanal. Chem. 416 105

    [31]

    Tu C K, Chen K, Tian W D, Ma Y Q 2013 Macromol. Rapid Comm. 34 1237

    [32]

    Ding H M, Ma Y Q 2012 Biomaterials 33 5798

  • [1]

    Yousaf M Z, Yu J, Hou Y L, Gao S 2013 Chin. Phys. B 22 058702

    [2]

    Liu J W, Jiang X M, Ashley C, Brinker C J 2009 J. Am. Chem. Soc. 131 7567

    [3]

    Giri S, Trewyn B G, Stellmaker M P, Lin V S Y 2005 Angew. Chem. Int. Ed. 44 5038

    [4]

    Hong C Y, Li X, Pan C Y 2008 J. Phys. Chem. C 112 15320

    [5]

    Liu R, Zhang Y, Zhao X, Agarwal A, Mueller L J, Feng P Y 2010 J. Am. Chem. Soc. 132 1500

    [6]

    Ashley C E, Carnes E C, Phillips G K, Padilla D, Durfee P N, Brown P A, Hanna T N, Liu J W, Phillips B, Carter M B, Carroll N J, Jiang X M, Dunphy D R, Willman C L, Petsev D N, Evans D G, Parikh A N, Chackerian B, Wharton W, Peabody D S, Brinker C J 2011 Nature Materials 10 389

    [7]

    Rosenholm J M, Peuhu E, Eriksson J E, Sahlgren C, Lindén M 2009 Nano Lett. 9 3308

    [8]

    Liong M, Lu J, Kovochich M, Xia T, Ruehm S G, Nel A E, Tamanoi F, Zink J I 2008 ACS Nano. 2 889

    [9]

    Lei J M, L L, Liu L, Xu X L 2011 Acta Phys. Sin. 60 017501 (in Chinese) [雷洁梅, 吕柳, 刘玲, 许小亮 2011 物理学报 60 017501]

    [10]

    Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz-Javier A, Gaub H E, Stölzle S, Fertig N, Parak W J 2005 Nano Lett. 5 2331

    [11]

    Cho E C, Xie J, Wurm P A, Xia Y 2009 Nano Lett. 9 1080

    [12]

    Arvizo R R, Miranda O R, Thompson M A, Pabelick C M, Bhattacharya R, Robertson J D, Rotello V M, Prakash Y S, Mukherjee P 2010 Nano Lett. 10 2543

    [13]

    Xia T, Kovochich M, Liong M, Zink J I, Nel A E 2008 ACS Nano. 2 85

    [14]

    Wilhelm C, Billotey C, Roger J, Pons J N, Bacri J C, Gazeau F 2003 Biomaterials 24 1001

    [15]

    Ryman-Rasmussen J P, Riviere J E, Monteiro-Riviere N A 2007 Nano Lett. 7 1344

    [16]

    Zhang X F, Yang S H 2011 Langmuir 27 2528

    [17]

    Rodahl M, Höök F, Fredriksson C, Keller C A, Krozer A, Brzezinski P, Voinova M, Kasemo B 1997 Faraday Discuss 107 229

    [18]

    Voinova M V, Jonson M, Kasemo B 2002 Biosensors and Bioelectronics 17 835

    [19]

    Richter R, Mukhopadhyay A, Brisson A 2003 Biophys. J 85 3035

    [20]

    Lu N Y, Yang K, Yuan B, Ma Y Q 2012 J. Phys. Chem. B 116 9432

    [21]

    Plant A L, Gueguechkeri M, Yap W 1994 Biophys. J. 67 1126

    [22]

    Plant A L 1999 Langmuir 15 5128

    [23]

    Jiang Z Y, Zhang G L, Ma J, Zhu T 2013 Acta Phys. Sin. 62 018701 (in Chinese) [蒋中英, 张国梁, 马晶, 朱涛 2013 物理学报 62 018701]

    [24]

    Möller K, Kobler J, Bein T 2007 Adv. Funct. Mater. 17 605

    [25]

    Kecht J, Schlossbauer A, Bein T 2008 Chem. Mater. 20 7207

    [26]

    Cauda V, Engelke H, Sauer A, Arcizet D, Bräuchle C, Rädler J, Bein T 2010 Nano Lett. 10 2484

    [27]

    Park C, Oh K, Lee S C, Kim C 2007 Angew. Chem. Int. Ed. 46 1455

    [28]

    Academic A U 1991 Nature 354 120

    [29]

    Diao P, Jiang D L, Cui X L, Gu D P, Tong R T, Zhong B 1999 Bioelectrochem. Bioenerg. 48 469

    [30]

    Ding L, Li J H, Dong S J, Wang E K 1996 J. Electroanal. Chem. 416 105

    [31]

    Tu C K, Chen K, Tian W D, Ma Y Q 2013 Macromol. Rapid Comm. 34 1237

    [32]

    Ding H M, Ma Y Q 2012 Biomaterials 33 5798

  • [1] 潘钦杰, 赵灿东, 陈琪, 何毓辉, 缪向水. 面向单分子检测的纳米孔传感特异性增强技术. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240159
    [2] 崔涛, 王康妮, 高凯歌, 钱林勇. 带有多孔二氧化硅间隔层的导模共振光栅实现染料激光器发射增强. 物理学报, 2021, 70(1): 014201. doi: 10.7498/aps.70.20201017
    [3] 马丽, 贺小龙, 李明, 胡书新. tBid蛋白引发磷脂膜透化过程的研究. 物理学报, 2018, 67(14): 148703. doi: 10.7498/aps.67.20180099
    [4] 黄秀峰, 潘礼庆, 李晨曦, 王强, 孙刚, 陆坤权. 低温下二氧化硅介孔内水的振动性质. 物理学报, 2012, 61(13): 136801. doi: 10.7498/aps.61.136801
    [5] 何敏华, 张端明, 高义华. 镓填充二氧化硅纳米管的电子束诱导的反常膨胀(已撤稿). 物理学报, 2012, 61(18): 186102. doi: 10.7498/aps.61.186102
    [6] 杨杰, 李树奎, 闫丽丽, 王富耻. 二氧化硅气凝胶的防爆震性能及机理研究. 物理学报, 2010, 59(12): 8934-8940. doi: 10.7498/aps.59.8934
    [7] 徐国亮, 吕文静, 刘玉芳, 朱遵略, 张现周, 孙金锋. 外电场作用下二氧化硅分子的光激发特性研究. 物理学报, 2009, 58(5): 3058-3063. doi: 10.7498/aps.58.3058
    [8] 伍冬兰, 万慧军, 谢安东, 程新路, 杨向东. 二氧化硅分子配分函数的研究. 物理学报, 2009, 58(11): 7410-7413. doi: 10.7498/aps.58.7410
    [9] 肖中银, 王廷云, 罗文芸, 王子华. 高能粒子辐照二氧化硅玻璃E′色心形成机理研究. 物理学报, 2008, 57(4): 2273-2277. doi: 10.7498/aps.57.2273
    [10] 夏正月, 韩培高, 韦德远, 陈德媛, 徐 骏, 马忠元, 黄信凡, 陈坤基. 发光纳米硅/二氧化硅多层膜的特性与氢气氛退火的影响. 物理学报, 2007, 56(11): 6691-6694. doi: 10.7498/aps.56.6691
    [11] 王长顺, 潘 煦, Urisu Tsuneo. 同步辐射光激励的二氧化硅薄膜刻蚀研究. 物理学报, 2006, 55(11): 6163-6167. doi: 10.7498/aps.55.6163
    [12] 盛永刚, 徐 耀, 李志宏, 吴 东, 孙予罕, 吴中华. 气体吸附法测定二氧化硅干凝胶的分形维数. 物理学报, 2005, 54(1): 221-227. doi: 10.7498/aps.54.221
    [13] 钱林茂, 雒建斌, 温诗铸, 萧旭东. 二氧化硅及其硅烷自组装膜微观摩擦力与粘着力的研究(Ⅱ)粘着力的实验与分析. 物理学报, 2000, 49(11): 2247-2253. doi: 10.7498/aps.49.2247
    [14] 钱林茂, 雒建斌, 温诗铸, 萧旭东. 二氧化硅及其硅烷自组装膜微观摩擦力与粘着力的研究(Ⅰ)摩擦力的实验与分析. 物理学报, 2000, 49(11): 2240-2246. doi: 10.7498/aps.49.2240
    [15] 娄志东, 徐 征, 徐春祥, 于 磊, 滕 枫, 徐叙. 电致发光加速层二氧化硅的电子高场迁移率. 物理学报, 1998, 47(1): 139-145. doi: 10.7498/aps.47.139
    [16] 马书懿, 张伯蕊, 秦国刚, 韩和相, 汪兆平, 李国华, 马振昌, 宗婉华. 含纳米锗粒二氧化硅薄膜的光致发光研究. 物理学报, 1998, 47(3): 502-507. doi: 10.7498/aps.47.502
    [17] 沈军, 王珏, 吴翔. 二氧化硅多孔介质气凝胶和干凝胶的分形结构研究. 物理学报, 1996, 45(9): 1501-1505. doi: 10.7498/aps.45.1501
    [18] 卢豫曾, 郑耀宗. 二氧化硅生长新的动力学模型. 物理学报, 1985, 34(4): 447-454. doi: 10.7498/aps.34.447
    [19] 林荣富, 戴道宣, 江绍酉尤, 张永福, 包伟国, 吕国樑. 硅—二氧化硅界面过渡区的XPS研究. 物理学报, 1981, 30(10): 1295-1306. doi: 10.7498/aps.30.1295
    [20] 陈辰嘉, 杨澄清, 黄亨吉. 磷通过热生长二氧化硅层在硅中的扩散. 物理学报, 1964, 20(7): 662-669. doi: 10.7498/aps.20.662
计量
  • 文章访问数:  5100
  • PDF下载量:  1248
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-19
  • 修回日期:  2013-05-15
  • 刊出日期:  2013-09-05

/

返回文章
返回