搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多轴差分吸收光谱技术反演气溶胶消光系数垂直廓线

王杨 李昂 谢品华 陈浩 徐晋 吴丰成 刘建国 刘文清

引用本文:
Citation:

多轴差分吸收光谱技术反演气溶胶消光系数垂直廓线

王杨, 李昂, 谢品华, 陈浩, 徐晋, 吴丰成, 刘建国, 刘文清

Retrieving vertical profile of aerosol extinction by multi-axis differential optical absorption spectroscopy

Wang Yang, Li Ang, Xie Pin-Hua, Chen Hao, Xu Jin, Wu Feng-Cheng, Liu Jian-Guo, Liu Wen-Qing
PDF
导出引用
  • 研究了多轴差分吸收光谱技术(MAX-DOAS)的气溶胶消光系数垂直廓线反演算法. 该算法应用非线性最优估算法, 通过MAX-DOAS测量的氧的二聚体(O4), 反演气溶胶消光系数垂直廓线和光学厚度(AOD). 首先研究了非线性最优估算法中权重函数、先验廓线协方差矩阵、测量不确定度协方差矩阵的计算方法, 针对中国气溶胶浓度较高且变化剧烈的特征, 设计了非线性迭代方案. 然后在低气溶胶、高气溶胶和抬高型气溶胶三种状态下, 通过计算机仿真模拟验证了MAX-DOAS气溶胶消光系数垂直分布反演算法, 讨论了误差来源. 之后在合肥地区开展了连续观测实验, 并将反演的AOD与CE318太阳光度计对比, 两者的相关性系数达到了0.94. AOD反演的相对误差约为20%. 又将反演的最低层(0–0.3 km)气溶胶消光系数与能见度仪对比, 两者的相关性系数为0.65. 近地面气溶胶消光系数反演的总相对误差约为10%. 模拟验证和对比实验均说明本文研究的气溶胶消光系数垂直廓线反演算法可以较好地获取对流层的气溶胶状态.
    Using the oxygen dimer (O4 information measured by multi-axis differential optical absorption spectroscopy (MAX-DOAS)), an inversion method of vertical profile of aerosol extinction based on nonlinear optimal estimation algorithm is developed. At first we study how to calculate some parameters (weighting function, the covariance matrices of measurement and a priori) of the algorithm and design nonlinear iteration strategy suited to Chinese region where aerosol usually shows rapid variation and high load. Then this inversion method is verified by computer simulation combined with discussion about error source in three typical cases of low, high and elevated aerosol. After that a continuous observation is reported in the city of Hefei. The aerosol optical depth (AOD) derived from MAX-DOAS is compared with that of CE318 sun photometer and the correlation coefficient is 0.94. The total relative error of AOD is about 20%. In addition the aerosol extinction in the lowest altitude (0-0.3 km) is compared with that of visibility meter and the correlation coefficient is about 0.65. The total relative error of surface-near aerosol extinction is about 25%. Both of simulation verification and comparison experiment indicate that the inversion method can well rebuild the vertical profile of aerosol extinction in the troposphere.
    • 基金项目: 国家自然科学基金(批准号:41275038)和环保公益性项目(批准号:201109007)资助的课题.
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 41275038) and the Special Project of Environmental Nonprofit Industry Research, China (Grant No. 201109007).
    [1]

    IPCC 2007 Intergovernmental Panel on Climate Change, Fourth assessment report

    [2]

    Wang M X, Zhang R J 2001 Climat. Environ. Res. 6 119 (in Chinese) [王明星, 张仁健 2001 气候与环境研究 6 119]

    [3]

    Li X, An J L, Wang Y S 2003 China Environ. Sci. 23 353 (in Chinese) [李昕, 安俊琳, 王跃思 2003 中国环境科学 23 353]

    [4]

    Xu J, Xie P H, Si F Q 2012 Acta Phys. Sin. 61 024204 (in Chinese) [徐晋, 谢品华, 司福祺 2012 物理学报 61 024204]

    [5]

    Ma L C, Yin Y 2012 J. Meteorol. Sci. doi: 10.3969/2012jms.0144 (in Chinese) [马梁臣, 银燕 2012 气象科学 doi: 10.3969/2012jms.0144]

    [6]

    Nakajima T, Tanaka M, Yamauchi T 1983 Appl. Opt. 22 2951

    [7]

    Yi Q, He J H, Zhang H 2009 J. Meteorol. Environ. 25 48 (in Chinese) [尹青, 何金海, 张华 2009 气象与环境学报 25 48]

    [8]

    Wang Y, Xie P H, Li A 2012 Acta Phys. Sin. 61 114209 (in Chinese) [王杨, 谢品华, 李昂 2012 物理学报 61 114209]

    [9]

    Wang Y, Xie P H, Li A 2012 Spectrosc. Spectral Anal. 32 893 (in Chinese) [王杨, 谢品华, 李昂 2012 光谱学与光谱分析 32 893]

    [10]

    Stella M L, Farahani E, Strong K 2004 Adv. Space Res. 34 786

    [11]

    Hönninger G, von Friedeburg C, Platt U 2004 Atmos. Chem. Phys. 4 231

    [12]

    Ma J Z, Beirle S, Jin J L 2012 Atmos. Chem. Phys. Discuss. 12 26719

    [13]

    Zhou H J, Liu W Q, Si F Q, Xie P H, Xu J, Dou K 2011 Acta Opt. Sin. 31 1101007 (in Chinese) [周海金, 刘文清, 司福祺, 谢品华, 许晋, 窦科 2011 光学学报 31 1101007]

    [14]

    Wagner T, Dix B, Friedeburg C V 2004 J. Geophys. Res. 109 22205

    [15]

    Frieß U, Monks P S, Remedios J J 2006 J. Geophys. Res. 111 D14203

    [16]

    Rodgers C D 2000 Inverse Methods for Atmospheric Sounding: Theory and Practice, Ser. Atmos. Oceanic Planet. Phys. vol. 2

    [17]

    Irie H, Kanaya Y, Akimoto H 2008 Atmos. Chem. Phys. 8 341

    [18]

    Clemer K, van Roozendael M, Fayt C 2010 Atmos. Meas. Tech. 3 863

    [19]

    Wagner T, Beirle S, Brauers T 2011 Atmos. Meas. Tech. Discuss 4 3891

    [20]

    Li X, Brauers T, Hofzumahaus A 2012 Chem. Phys. Discuss 12 3983

    [21]

    Xu J, Xie P H, Si F Q 2010 Spectrosc. Spectral Anal. 30 2464 (in Chinese) [徐晋, 谢品华, 司福祺 2010 光谱学与光谱分析 30 2464]

    [22]

    Greenblatt G D, Orlando J J, Burkholder J B 1990 J. Geophys. Res. 95 18577

    [23]

    Wagner T, von Friedeburg C, Wenig M 2002 J. Geophys. Res. 107 D204424

    [24]

    Rozanov A, Rozanov V, Buchwitz M 2005 Adv. Space Res. 36 1015

    [25]

    Solomon S, Schmeltekopf A L, Sanders R W 1987 J. Geophys. Res. 92 8311

    [26]

    Greenblatt G D, Orlando J J, Burkholder J B, Ravis-hankara A R 1990 J. Geophys. Res. 951857

    [27]

    Vandaele A C, Hermans C, Simon P C, Carleer M, Colins R, Fally S, M’erienne M F, Jenouvrier A, Coquart B 1998 J. Quant. Spectrosc. Radiat. Transfer 59171

    [28]

    Bogumil K, Orphal J, Homann T, Voigt S, Spietz P, Fleischmann O C, Vogel A, Hart-mann M, Bovensmann H, Frerik J, Burrows J P 2003 J. Photoch. Pho-tobio. A. 157

    [29]

    Meller R and Moortgat G K 2000 J. Geophys. Res. 105 7089

    [30]

    Bruhl C, Crutzen P J 1993 NASA Ref. Publ. 1292 103

  • [1]

    IPCC 2007 Intergovernmental Panel on Climate Change, Fourth assessment report

    [2]

    Wang M X, Zhang R J 2001 Climat. Environ. Res. 6 119 (in Chinese) [王明星, 张仁健 2001 气候与环境研究 6 119]

    [3]

    Li X, An J L, Wang Y S 2003 China Environ. Sci. 23 353 (in Chinese) [李昕, 安俊琳, 王跃思 2003 中国环境科学 23 353]

    [4]

    Xu J, Xie P H, Si F Q 2012 Acta Phys. Sin. 61 024204 (in Chinese) [徐晋, 谢品华, 司福祺 2012 物理学报 61 024204]

    [5]

    Ma L C, Yin Y 2012 J. Meteorol. Sci. doi: 10.3969/2012jms.0144 (in Chinese) [马梁臣, 银燕 2012 气象科学 doi: 10.3969/2012jms.0144]

    [6]

    Nakajima T, Tanaka M, Yamauchi T 1983 Appl. Opt. 22 2951

    [7]

    Yi Q, He J H, Zhang H 2009 J. Meteorol. Environ. 25 48 (in Chinese) [尹青, 何金海, 张华 2009 气象与环境学报 25 48]

    [8]

    Wang Y, Xie P H, Li A 2012 Acta Phys. Sin. 61 114209 (in Chinese) [王杨, 谢品华, 李昂 2012 物理学报 61 114209]

    [9]

    Wang Y, Xie P H, Li A 2012 Spectrosc. Spectral Anal. 32 893 (in Chinese) [王杨, 谢品华, 李昂 2012 光谱学与光谱分析 32 893]

    [10]

    Stella M L, Farahani E, Strong K 2004 Adv. Space Res. 34 786

    [11]

    Hönninger G, von Friedeburg C, Platt U 2004 Atmos. Chem. Phys. 4 231

    [12]

    Ma J Z, Beirle S, Jin J L 2012 Atmos. Chem. Phys. Discuss. 12 26719

    [13]

    Zhou H J, Liu W Q, Si F Q, Xie P H, Xu J, Dou K 2011 Acta Opt. Sin. 31 1101007 (in Chinese) [周海金, 刘文清, 司福祺, 谢品华, 许晋, 窦科 2011 光学学报 31 1101007]

    [14]

    Wagner T, Dix B, Friedeburg C V 2004 J. Geophys. Res. 109 22205

    [15]

    Frieß U, Monks P S, Remedios J J 2006 J. Geophys. Res. 111 D14203

    [16]

    Rodgers C D 2000 Inverse Methods for Atmospheric Sounding: Theory and Practice, Ser. Atmos. Oceanic Planet. Phys. vol. 2

    [17]

    Irie H, Kanaya Y, Akimoto H 2008 Atmos. Chem. Phys. 8 341

    [18]

    Clemer K, van Roozendael M, Fayt C 2010 Atmos. Meas. Tech. 3 863

    [19]

    Wagner T, Beirle S, Brauers T 2011 Atmos. Meas. Tech. Discuss 4 3891

    [20]

    Li X, Brauers T, Hofzumahaus A 2012 Chem. Phys. Discuss 12 3983

    [21]

    Xu J, Xie P H, Si F Q 2010 Spectrosc. Spectral Anal. 30 2464 (in Chinese) [徐晋, 谢品华, 司福祺 2010 光谱学与光谱分析 30 2464]

    [22]

    Greenblatt G D, Orlando J J, Burkholder J B 1990 J. Geophys. Res. 95 18577

    [23]

    Wagner T, von Friedeburg C, Wenig M 2002 J. Geophys. Res. 107 D204424

    [24]

    Rozanov A, Rozanov V, Buchwitz M 2005 Adv. Space Res. 36 1015

    [25]

    Solomon S, Schmeltekopf A L, Sanders R W 1987 J. Geophys. Res. 92 8311

    [26]

    Greenblatt G D, Orlando J J, Burkholder J B, Ravis-hankara A R 1990 J. Geophys. Res. 951857

    [27]

    Vandaele A C, Hermans C, Simon P C, Carleer M, Colins R, Fally S, M’erienne M F, Jenouvrier A, Coquart B 1998 J. Quant. Spectrosc. Radiat. Transfer 59171

    [28]

    Bogumil K, Orphal J, Homann T, Voigt S, Spietz P, Fleischmann O C, Vogel A, Hart-mann M, Bovensmann H, Frerik J, Burrows J P 2003 J. Photoch. Pho-tobio. A. 157

    [29]

    Meller R and Moortgat G K 2000 J. Geophys. Res. 105 7089

    [30]

    Bruhl C, Crutzen P J 1993 NASA Ref. Publ. 1292 103

  • [1] 任红梅, 李昂, 胡肇焜, 黄业园, 徐晋, 谢品华, 钟鸿雁, 李晓梅. 基于多轴差分吸收光谱技术测量青岛市大气水汽垂直柱浓度及垂直分布. 物理学报, 2020, 69(20): 204204. doi: 10.7498/aps.69.20200588
    [2] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [3] 高飞, 南恒帅, 黄波, 汪丽, 李仕春, 王玉峰, 刘晶晶, 闫庆, 宋跃辉, 华灯鑫. 紫外域多纵模高光谱分辨率激光雷达探测气溶胶的技术实现和系统仿真. 物理学报, 2018, 67(3): 030701. doi: 10.7498/aps.67.20172036
    [4] 郑利娟, 程天海, 吴俣. 黑碳团簇气溶胶混合生长的红外吸收特性及长波辐射效应. 物理学报, 2017, 66(16): 169201. doi: 10.7498/aps.66.169201
    [5] 胡帅, 高太长, 李浩, 杨波, 江志东, 陈鸣, 李书磊. 基于时域多分辨算法的非球形气溶胶散射特性仿真模拟. 物理学报, 2017, 66(4): 044207. doi: 10.7498/aps.66.044207
    [6] 冯明春, 徐亮, 刘文清, 刘建国, 高闽光, 魏秀丽. 基于MODTRAN模型使用被动傅里叶变换红外光谱技术对生物气溶胶的探测研究. 物理学报, 2016, 65(1): 014210. doi: 10.7498/aps.65.014210
    [7] 张学海, 魏合理, 戴聪明, 曹亚楠, 李学彬. 取向比对椭球气溶胶粒子散射特性的影响. 物理学报, 2015, 64(22): 224205. doi: 10.7498/aps.64.224205
    [8] 狄慧鸽, 侯晓龙, 赵虎, 阎蕾洁, 卫鑫, 赵欢, 华灯鑫. 多波长激光雷达探测多种天气气溶胶光学特性与分析. 物理学报, 2014, 63(24): 244206. doi: 10.7498/aps.63.244206
    [9] 王杨, Wagner Thomas, 李昂, 谢品华, 伍德侠, 陈浩, 牟福生, 张杰, 徐晋, 吴丰成, 刘建国, 刘文清, 曾议. 多轴差分吸收光谱技术的云和气溶胶类型鉴别方法研究. 物理学报, 2014, 63(11): 110708. doi: 10.7498/aps.63.110708
    [10] 王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒. 多轴差分吸收光谱仪反演大气NO2的比对试验. 物理学报, 2013, 62(5): 054206. doi: 10.7498/aps.62.054206
    [11] 王杨, 李昂, 谢品华, 陈浩, 牟福生, 徐晋, 吴丰成, 曾议, 刘建国, 刘文清. 多轴差分吸收光谱技术测量NO2对流层垂直分布及垂直柱浓度. 物理学报, 2013, 62(20): 200705. doi: 10.7498/aps.62.200705
    [12] 徐晋, 谢品华, 司福祺, 李昂, 刘文清. 机载多轴差分吸收光谱技术获取对流层NO2垂直柱浓度的研究. 物理学报, 2012, 61(2): 024204. doi: 10.7498/aps.61.024204
    [13] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊. 宽带腔增强吸收光谱技术应用于痕量气体探测及气溶胶消光系数测量. 物理学报, 2012, 61(6): 060702. doi: 10.7498/aps.61.060702
    [14] 李霞, 张镭. 基于后向轨迹追踪模式分析SACOL气溶胶来源及其光学特性. 物理学报, 2012, 61(2): 023402. doi: 10.7498/aps.61.023402
    [15] 司福祺, 谢品华, 窦科, 詹铠, 刘宇, 徐晋, 刘文清. 被动多轴差分吸收光谱大气气溶胶光学厚度监测方法研究. 物理学报, 2010, 59(4): 2867-2872. doi: 10.7498/aps.59.2867
    [16] 韩 永, 王体健, 饶瑞中, 王英俭. 大气气溶胶物理光学特性研究进展. 物理学报, 2008, 57(11): 7396-7407. doi: 10.7498/aps.57.7396
    [17] 孙贤明, 哈恒旭. 基于反射太阳光反演气溶胶光学厚度和有效半径. 物理学报, 2008, 57(9): 5565-5570. doi: 10.7498/aps.57.5565
    [18] 左浩毅, 杨经国. 基于气溶胶光学厚度反演大气气溶胶尺度分布. 物理学报, 2007, 56(10): 6132-6136. doi: 10.7498/aps.56.6132
    [19] 郝 楠, 周 斌, 陈立民. 利用差分吸收光谱法测量亚硝酸和反演气溶胶参数. 物理学报, 2006, 55(3): 1529-1533. doi: 10.7498/aps.55.1529
    [20] 司福祺, 刘建国, 谢品华, 张玉钧, 窦 科, 刘文清. 差分吸收光谱技术监测大气气溶胶粒谱分布. 物理学报, 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
计量
  • 文章访问数:  6832
  • PDF下载量:  646
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-04
  • 修回日期:  2013-05-09
  • 刊出日期:  2013-09-05

/

返回文章
返回