搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于格林函数法研究金属线栅在太赫兹波段的散射特性

张会云 刘蒙 尹贻恒 吴志心 申端龙 张玉萍

引用本文:
Citation:

基于格林函数法研究金属线栅在太赫兹波段的散射特性

张会云, 刘蒙, 尹贻恒, 吴志心, 申端龙, 张玉萍

Study on scattering properties of the metal wire gating in a THz band based on Green function method

Zhang Hui-Yun, Liu Meng, Yin Yi-Heng, Wu Zhi-Xin, Shen Duan-Long, Zhang Yu-Ping
PDF
导出引用
  • 本文运用格林函数法分析金属线栅在太赫兹(THz)波段的散射特性, 研究金属线栅的衍射效应对其传输特性的影响. 研究结果表明, 在零级衍射区入射电磁波的透过振幅随a/的增大单调增加, 在零级衍射极限处透过振幅达到最大值. 过渡区的临界频率处, 由于衍射效应的加强, 出现入射电磁波透过曲线的振荡. 衍射区受到衍射效应的影响入射电磁波透射振幅曲线总体下降, 并随a/的增大单调减少. 与微波传输线方法相比, 该方法摆脱了入射电磁波的波长需大于线栅常数且要求线栅的厚度远远小于金属线的宽度的限制, 能准确的分析系统的电磁场的分布特性, 更具普适性.
    The present paper utilizes the Green function method to analyze the scattering properties of the metal wire grating in the THz band, and further to study the influence of the diffraction on the transfer characteristic of the metal wire grating. Results prove that the transmission amplitude of the incident electromagnetic wave is increasing monotonously with the enlargement of the value of a/, and it arrives at the maximum in the zero-order diffraction limit. Due to the strengthened effect of diffraction, transmission curves of the incident electromagnetic wave show oscillation in the critical frequency transition region. Due to the diffraction effect, the transmission amplitude of the incident electromagnetic wave demonstrates an overall decline in the diffraction zone, and it is decreasing monotonously with the enlargement in the value of a/. Compared with microwave transmission line method, this method can aliminate the restriction that the wavelength of the incident electromagnetic wave must be greater than the wire grating constant, and the thickness of wire grating must be far less than the metal line width. This method could be used to analyze the distribution of the electromagnetic properties of the system accurately; and it will be a generally suitable one.
    • 基金项目: 国家自然科学基金(批准号:61001018);山东省自然科学基金(批准号:ZR2011FM009,ZR2012FM011);山东科技大学杰出青年科学基金(批准号:2010KYJQ103);山东省高等学校科技计划项目(批准号:J11LG20);青岛市科技计划项目(批准号:11-2-4-4-(8)-jch)和山东科技大学科技创新基金(批准号:YCB120173)资助的课题.
    • Funds: Project is supported by the National Natural Science Foundation of China (Grant No. 61001018), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2011FM009, ZR2012FM011), the Research Fund of Shandong University of Science and Technology (SDUST), China (Grant No. 2010KYJQ103), the Shandong Province Higher Educational Science and Technology Program (Grant No. J11LG20) the Qingdao Science Technology Project (Grant No. 11-2-4-4-(8)-jch), and the Shandong University of Science and Technology Foundation, China (Grant No. YCB120173).
    [1]

    Marcuvitz N 1951 Waveguide Handbook (New York: McGraw-Hill Ed.) pp280-285

    [2]

    Ulrich R, Bridges T J, Pollack M A 1970 Appl. Optics. 9 2511

    [3]

    Compton R C, Whitbourn L B, McPhedran R C 1984 Appl. Optics. 23 3236

    [4]

    Durschlag M S, DeTemple T A 1981 Appl. Optics. 2 1245

    [5]

    Feng X G, Fang L, Sun L C 2005 Opt. Precision Eng. 13 59 (in Chinese) [冯晓国, 方梁, 孙连春 2005 光学精密工程 13 59]

    [6]

    Gao X, Guo Q L, Tong X D 1992 Infrared Tech. 16 27 (in Chinese) [高翔, 郭其良, 童兴德 1992 红外技术 16 27]

    [7]

    Cao T L, Yao J Q 2008 Mod. Sci. Instr. 2 36 (in Chinese) [曹铁岭, 姚建铨 2008 现代科学仪器 2 36]

    [8]

    Geng L J 2009 MS Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [耿利杰 2009 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [9]

    Jiang C Y, Cai R, Liu J S, Wang K J, Wang S L 2012 Acta Optica Sinica 32 1 (in Chinese) [蒋呈阅, 蔡瑞, 刘劲松, 王可嘉, 王盛烈 2012 光学学报 32 1]

    [10]

    Liu L M, Zhao G Z, Zhang G H, Wei B, Zhang S B 2012 Chinese J. Lasers 39 1 (in Chinese) [刘立明, 赵国忠, 张杲辉, 魏波, 张盛博 2012 中国激光 39 1]

    [11]

    Li F F, Li D, Shu S W, Ma G H, Ge J, Hu S H, Dai N 2010 J. Infrared Millm. W. 29 452 (in Chinese) [栗芳芳, 李栋, 舒时伟, 马国宏, 葛进, 胡淑红, 戴宁 2010 红外与毫米波学报 29 452]

    [12]

    Kang G G, Tan Q F, Chen W L, Li Q Q, Jin W Q, Jin G F 2011 Acta Phys. Sin. 60 014218 (in Chinese) [康果果, 谭峤峰, 陈伟力, 李群庆, 金伟其, 金国藩 2011 物理学报 60 014218]

    [13]

    Gradshteyn I S, Ryzhik I M 1965 Table of Integrals, Series, and Products (London: Reed Elsevier) pp769-941

    [14]

    Bayanheshig, Zhu H C 2007 Acta Phys. Sin. 56 3893 (in Chinese) [巴音贺希格, 朱洪春 2007 物理学报 56 3893]

    [15]

    Chen H, Sun Y M, Wang L 2009 Chin. Phys. B 18 4287

    [16]

    Jackson J D 1962 Classical Electrodynamics (New York: Wiley) pp14-305

    [17]

    Gonis A, William H B 2000 Multiple scattering in solids (New York: Springer-Verlag New York Inc.) pp6-121

    [18]

    Ham F S, Segall B 1961 Phys. Rev. 124 1786

    [19]

    Chambers W G, Mok C L, Parker T J 1980 J. Phys. A Math. Gen. 13 1433

    [20]

    Chambers W G, Mok C L, Parker T J 1980 J. Phys. D Appl. Phys. 13 515

    [21]

    Abramowitz M, Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover Publications Inc.) pp355-479

  • [1]

    Marcuvitz N 1951 Waveguide Handbook (New York: McGraw-Hill Ed.) pp280-285

    [2]

    Ulrich R, Bridges T J, Pollack M A 1970 Appl. Optics. 9 2511

    [3]

    Compton R C, Whitbourn L B, McPhedran R C 1984 Appl. Optics. 23 3236

    [4]

    Durschlag M S, DeTemple T A 1981 Appl. Optics. 2 1245

    [5]

    Feng X G, Fang L, Sun L C 2005 Opt. Precision Eng. 13 59 (in Chinese) [冯晓国, 方梁, 孙连春 2005 光学精密工程 13 59]

    [6]

    Gao X, Guo Q L, Tong X D 1992 Infrared Tech. 16 27 (in Chinese) [高翔, 郭其良, 童兴德 1992 红外技术 16 27]

    [7]

    Cao T L, Yao J Q 2008 Mod. Sci. Instr. 2 36 (in Chinese) [曹铁岭, 姚建铨 2008 现代科学仪器 2 36]

    [8]

    Geng L J 2009 MS Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [耿利杰 2009 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [9]

    Jiang C Y, Cai R, Liu J S, Wang K J, Wang S L 2012 Acta Optica Sinica 32 1 (in Chinese) [蒋呈阅, 蔡瑞, 刘劲松, 王可嘉, 王盛烈 2012 光学学报 32 1]

    [10]

    Liu L M, Zhao G Z, Zhang G H, Wei B, Zhang S B 2012 Chinese J. Lasers 39 1 (in Chinese) [刘立明, 赵国忠, 张杲辉, 魏波, 张盛博 2012 中国激光 39 1]

    [11]

    Li F F, Li D, Shu S W, Ma G H, Ge J, Hu S H, Dai N 2010 J. Infrared Millm. W. 29 452 (in Chinese) [栗芳芳, 李栋, 舒时伟, 马国宏, 葛进, 胡淑红, 戴宁 2010 红外与毫米波学报 29 452]

    [12]

    Kang G G, Tan Q F, Chen W L, Li Q Q, Jin W Q, Jin G F 2011 Acta Phys. Sin. 60 014218 (in Chinese) [康果果, 谭峤峰, 陈伟力, 李群庆, 金伟其, 金国藩 2011 物理学报 60 014218]

    [13]

    Gradshteyn I S, Ryzhik I M 1965 Table of Integrals, Series, and Products (London: Reed Elsevier) pp769-941

    [14]

    Bayanheshig, Zhu H C 2007 Acta Phys. Sin. 56 3893 (in Chinese) [巴音贺希格, 朱洪春 2007 物理学报 56 3893]

    [15]

    Chen H, Sun Y M, Wang L 2009 Chin. Phys. B 18 4287

    [16]

    Jackson J D 1962 Classical Electrodynamics (New York: Wiley) pp14-305

    [17]

    Gonis A, William H B 2000 Multiple scattering in solids (New York: Springer-Verlag New York Inc.) pp6-121

    [18]

    Ham F S, Segall B 1961 Phys. Rev. 124 1786

    [19]

    Chambers W G, Mok C L, Parker T J 1980 J. Phys. A Math. Gen. 13 1433

    [20]

    Chambers W G, Mok C L, Parker T J 1980 J. Phys. D Appl. Phys. 13 515

    [21]

    Abramowitz M, Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover Publications Inc.) pp355-479

  • [1] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [2] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [3] 宁辉, 王凯程, 王少萌, 宫玉彬. 强场太赫兹波作用下氢气分子振动动力学研究. 物理学报, 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [4] 王红霞, 张清华, 侯维君, 魏一苇. 不同模态沙尘暴对太赫兹波的衰减分析. 物理学报, 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [5] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [6] 陈伟, 郭立新, 李江挺, 淡荔. 时空非均匀等离子体鞘套中太赫兹波的传播特性. 物理学报, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [7] 吴琼, 任志君, 杜林岳, 胡海华, 顾颖, 杨朝凤. 基于格林函数法的奇型Mathieu-Gaussian光束. 物理学报, 2017, 66(20): 204201. doi: 10.7498/aps.66.204201
    [8] 程晨, 史泽林, 崔生成, 徐青山. 改进的单次散射相函数解析表达式. 物理学报, 2017, 66(18): 180201. doi: 10.7498/aps.66.180201
    [9] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取. 物理学报, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [10] 陆金星, 黄志明, 黄敬国, 王兵兵, 沈学民. 相位失配与材料吸收对利用GaSe差频产生太赫兹波功率影响的研究. 物理学报, 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
    [11] 王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟. 碳纳米管辐射太赫兹波的理论分析与数值验证. 物理学报, 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [12] 谭晓玲, 耿优福, 周骏, 姚建铨. THz波在金属镀层空芯波导中传输的理论和实验研究. 物理学报, 2011, 60(5): 054101. doi: 10.7498/aps.60.054101
    [13] 张戎, 曹俊诚. 光子晶体对太赫兹波的调制特性研究. 物理学报, 2010, 59(6): 3924-3929. doi: 10.7498/aps.59.3924
    [14] 刘文军, 毛宏燕, 付国庆, 曲士良. 散射介质中多重散射太赫兹脉冲的时域统计特性. 物理学报, 2010, 59(2): 913-917. doi: 10.7498/aps.59.913
    [15] 李忠洋, 姚建铨, 李俊, 邴丕彬, 徐德刚, 王鹏. 基于闪锌矿晶体中受激电磁耦子散射产生可调谐太赫兹波的理论研究. 物理学报, 2010, 59(9): 6237-6242. doi: 10.7498/aps.59.6237
    [16] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [17] 付方正, 李明. 蒙特卡罗法计算无序激光器的阈值. 物理学报, 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [18] 姚文杰, 俞重远, 刘玉敏, 芦鹏飞. 基于连续弹性理论分析量子线线宽对应变分布和带隙的影响. 物理学报, 2009, 58(2): 1185-1189. doi: 10.7498/aps.58.1185
    [19] 张玉萍, 张会云, 耿优福, 谭晓玲, 姚建铨. 太赫兹波在有限电导率金属空芯波导中的传输特性. 物理学报, 2009, 58(10): 7030-7033. doi: 10.7498/aps.58.7030
    [20] 孙红起, 赵国忠, 张存林, 杨国桢. 不同中心波长飞秒脉冲激发InAs表面辐射太赫兹波的机理研究. 物理学报, 2008, 57(2): 790-795. doi: 10.7498/aps.57.790
计量
  • 文章访问数:  5501
  • PDF下载量:  847
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-06
  • 修回日期:  2013-06-07
  • 刊出日期:  2013-10-05

/

返回文章
返回