搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究

薛源 郜超军 谷锦华 冯亚阳 杨仕娥 卢景霄 黄强 冯志强

引用本文:
Citation:

薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究

薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强

Study on the properties and optical emission spectroscopy of the intrinsic silicon thin film in silicon heterojunction solar cells

Xue Yuan, Gao Chao-Jun, Gu Jin-Hua, Feng Ya-Yang, Yang Shi-E, Lu Jing-Xiao, Huang Qiang, Feng Zhi-Qiang
PDF
导出引用
  • 本文采用甚高频等离子体化学气相沉积技术 (VHF-PECVD) 制备薄膜硅/晶体硅异质结电池中的本征硅薄膜钝化层, 光发射谱 (OES) 测量技术研究了硅薄膜沉积过程中等离子体发光谱随时间的变化. 结果表明: 在实验优化条件下等离子体发光谱很快达到稳定 (大约25 s), 并且SiH*/Hα* 的比值随时间变化较小, 避免了生长过程中硅薄膜结构的不均匀性, 这主要是SiH4没有完全耗尽避免了SiH4的反向扩散. 进一步研究了沉积参数对稳态发光谱和硅薄膜性质的影响, 结果表明: 随着硅烷浓度增加, Hα*峰强度减小, SiH*峰强度增加, 薄膜从微晶转变成非晶, 非晶硅薄膜钝化效果好; 随着沉积气压增大, Hα*和 SiH*峰强度先增加后减小, 高气压下Hα*和 SiH*峰强度下降主要是反应前驱物的聚合形成高聚合物, 不利于形成高质量的硅薄膜, 因此钝化效果下降; 随着反应功率密度增加, Hα*和 SiH*峰强度增大, 当功率密度为150 mW/cm2 趋于饱和, 硅薄膜的致密度和钝化效果也开始下降, 50 mW/cm2的低功率密度下硅薄膜钝化效果差可能是由于原子H 浓度低, 不能完全钝化单晶硅表面的悬挂键.
    The intrinsic silicon thin film for passivation of the crystalline silicon wafer surfaces in silicon heterojunction cells was prepared by very high fregucency plasma enhanced CVD (VHF-PECVD). Plasma emission versus time was recorded by optical emission spectroscopy (OES) during the silicon thin film deposition. Results show that the Hα* and SiH* signals stabilize soon (about 25 s after deposition) under the optimized deposition conditions, and the variation of SiH*/Hα* ratio is little, thus avoiding the structure non-uniformity of silicon film during the growth. The reason is that the SiH4 back diffusion is avoided owing to SiH4 being not fully depleted. The study of the influence of the deposition parameters on steady-state plasma emission spectra and properties of silicon films shows that as the SiH4 concentration increases, the Hα* decreases and the SiH* increases, the silicon film will transit from microcrystalline to amorphous, and the good passivation effect can be achieved in the amorphous silicon film. Hα* and SiH* increase firstly and then decrease with the deposition pressure, the decrease of Hα* and SiH* under high pressure can be attributed to a high polymer formation which is not beneficial to the formation of high quality silicon film, and therefore the passivation effect of silicon films decreases under high pressures. Hα* and SiH* increase with power density, and are saturated when the power density is 150 mW/cm2; for this the quality and passivation effect of the silicon film begin to decrease, the passivation effect of the silicon film at a power density of 50 mW/cm2 is poor, which may be due to the low concentration of atomic H being unable to fully passivate the dangling bonds at the silicon surface.
    • 基金项目: 国家高技术研究发展计划(批准号:2011AA050501)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA050501).
    [1]

    Zhao L, Diao H W, Zeng X B, Zhou C L, Li H L, Wang W J 2010 Phys. B 405 61

    [2]

    Zhang X D, Zhao Y, Zhu F, Wei C C, Wu C Y, Gao Y T, Hou G F, Sun J, Gen X H, Xiong S Z 2005 Acta Phys. Sin. 54 445 (in Chinese) [张晓丹, 赵颖, 朱峰, 魏长春, 吴春亚, 高艳涛, 侯国付, 孙建, 耿新华, 熊绍珍 2005 物理学报 54 445]

    [3]

    Wu Z M, Sun J, Lei Q S, Zhao Y, Geng X H, Xi J P 2006 Phys. E 33 125

    [4]

    Meier M, Muthmann S, Flikweert A J, Dingemans G, van de Sanden M C M, Gordijn A 2011 Solar Energy Materials & Solar Cells 95 3328

    [5]

    Yang H D, Wu C Y, Huang J K, Ding R Q, Zhao Y, Geng X H, Xiong S Z 2005 Thin Solid Films 472 125

    [6]

    Kilper T, van den Donker M N, Carius R, Rech B, Bräuer G, Repmann T 2008 Thin Solid Films 516 4633

    [7]

    Jellison G E, Modine F A 1996 Appl. Phys. Lett. 69 371

    [8]

    Gielis J J H, van den Oever P J, Hoex B, van de Sanden M C M, Kessels W M M 2008 Phys. Lett. 77 205329

    [9]

    Fontcubertai Morral A, Rocai Cabarrocas P 2004 Phys. Rev. B 69 125307

    [10]

    Layadi N, Rocai Cabarrocas P, Drévillon B 1995 Phys. Rev. B 52 5136

    [11]

    Ferrera I, Costa M E V, Fortunato E, Martins R 2003 Thin Solid Films. 427 225

    [12]

    Dylla T, Finger F, Carius R 2003 Mater. Res. Soc. Symp. Proc. 762 A2.5

  • [1]

    Zhao L, Diao H W, Zeng X B, Zhou C L, Li H L, Wang W J 2010 Phys. B 405 61

    [2]

    Zhang X D, Zhao Y, Zhu F, Wei C C, Wu C Y, Gao Y T, Hou G F, Sun J, Gen X H, Xiong S Z 2005 Acta Phys. Sin. 54 445 (in Chinese) [张晓丹, 赵颖, 朱峰, 魏长春, 吴春亚, 高艳涛, 侯国付, 孙建, 耿新华, 熊绍珍 2005 物理学报 54 445]

    [3]

    Wu Z M, Sun J, Lei Q S, Zhao Y, Geng X H, Xi J P 2006 Phys. E 33 125

    [4]

    Meier M, Muthmann S, Flikweert A J, Dingemans G, van de Sanden M C M, Gordijn A 2011 Solar Energy Materials & Solar Cells 95 3328

    [5]

    Yang H D, Wu C Y, Huang J K, Ding R Q, Zhao Y, Geng X H, Xiong S Z 2005 Thin Solid Films 472 125

    [6]

    Kilper T, van den Donker M N, Carius R, Rech B, Bräuer G, Repmann T 2008 Thin Solid Films 516 4633

    [7]

    Jellison G E, Modine F A 1996 Appl. Phys. Lett. 69 371

    [8]

    Gielis J J H, van den Oever P J, Hoex B, van de Sanden M C M, Kessels W M M 2008 Phys. Lett. 77 205329

    [9]

    Fontcubertai Morral A, Rocai Cabarrocas P 2004 Phys. Rev. B 69 125307

    [10]

    Layadi N, Rocai Cabarrocas P, Drévillon B 1995 Phys. Rev. B 52 5136

    [11]

    Ferrera I, Costa M E V, Fortunato E, Martins R 2003 Thin Solid Films. 427 225

    [12]

    Dylla T, Finger F, Carius R 2003 Mater. Res. Soc. Symp. Proc. 762 A2.5

  • [1] 丁俊, 文黎巍, 李瑞雪, 张英. 铁电极化翻转对硅烯异质结中电子性质的调控. 物理学报, 2022, 71(17): 177303. doi: 10.7498/aps.71.20220815
    [2] 刘川川, 郝飞翔, 殷月伟, 李晓光. Pt/BiFeO3/Nb:SrTiO3异质结的光伏效应和光调控整流特性. 物理学报, 2020, 69(12): 127301. doi: 10.7498/aps.69.20200280
    [3] 张强, 王建元, 罗炳成, 邢辉, 金克新, 陈长乐. La1.3Sr1.7Mn2O7/SrTiO3-Nb异质结的整流和光伏特性. 物理学报, 2016, 65(10): 107301. doi: 10.7498/aps.65.107301
    [4] 陈剑辉, 杨静, 沈艳娇, 李锋, 陈静伟, 刘海旭, 许颖, 麦耀华. 后退火增强氢化非晶硅钝化效果的研究. 物理学报, 2015, 64(19): 198801. doi: 10.7498/aps.64.198801
    [5] 贾河顺, 罗磊, 李秉霖, 徐振华, 任现坤, 姜言森, 程亮, 张春艳. 彩色多晶硅太阳电池性能研究. 物理学报, 2013, 62(16): 168802. doi: 10.7498/aps.62.168802
    [6] 张治国. 薄膜硅的变隙问题及隙态分布. 物理学报, 2013, 62(14): 147301. doi: 10.7498/aps.62.147301
    [7] 冯秋菊, 蒋俊岩, 唐凯, 吕佳音, 刘洋, 李荣, 郭慧颖, 徐坤, 宋哲, 李梦轲. CVD法制备p-ZnO薄膜/n-Si异质结发光二极管及其性能研究. 物理学报, 2013, 62(5): 057802. doi: 10.7498/aps.62.057802
    [8] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [9] 张歆, 章晓中, 谭新玉, 于奕, 万蔡华. Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应. 物理学报, 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [10] 丁文革, 桑云刚, 于威, 杨彦斌, 滕晓云, 傅广生. 富硅氮化硅/c-Si异质结中的电流输运机理研究. 物理学报, 2012, 61(24): 247304. doi: 10.7498/aps.61.247304
    [11] 张祥, 刘邦武, 夏洋, 李超波, 刘杰, 沈泽南. Al2O3钝化及其在晶硅太阳电池中的应用. 物理学报, 2012, 61(18): 187303. doi: 10.7498/aps.61.187303
    [12] 吴晨阳, 谷锦华, 冯亚阳, 薛源, 卢景霄. 椭圆偏振光谱表征单晶硅衬底上生长的非晶硅和外延硅薄膜. 物理学报, 2012, 61(15): 157803. doi: 10.7498/aps.61.157803
    [13] 潘书万, 亓东峰, 陈松岩, 李成, 黄巍, 赖虹凯. Si(100)表面Se薄膜生长及其在Ti/Si欧姆接触中的应用. 物理学报, 2011, 60(9): 098108. doi: 10.7498/aps.60.098108
    [14] 陈鹏, 金克新, 陈长乐, 谭兴毅. La0.88 Te0.12 MnO3/Si异质结的整流和光伏特性研究. 物理学报, 2011, 60(6): 067303. doi: 10.7498/aps.60.067303
    [15] 吴利华, 章晓中, 于奕, 万蔡华, 谭新玉. a-C: Fe/AlOx/Si基异质结的光伏效应. 物理学报, 2011, 60(3): 037807. doi: 10.7498/aps.60.037807
    [16] 张发荣, 张晓丹, Amanatides E., Mataras D., 赵 静, 赵 颖. 微晶硅薄膜沉积过程中的等离子体光学与电学特性研究. 物理学报, 2008, 57(5): 3022-3026. doi: 10.7498/aps.57.3022
    [17] 赵 雷, 周春兰, 李海玲, 刁宏伟, 王文静. a-Si(n)/c-Si(p)异质结太阳电池薄膜硅背场的模拟优化. 物理学报, 2008, 57(5): 3212-3218. doi: 10.7498/aps.57.3212
    [18] 侯国付, 薛俊明, 孙 建, 郭群超, 张德坤, 任慧志, 赵 颖, 耿新华, 李乙钢. 高压PECVD技术沉积硅基薄膜过程中硅烷状态的研究. 物理学报, 2007, 56(2): 1177-1181. doi: 10.7498/aps.56.1177
    [19] 张晓丹, 赵 颖, 朱 锋, 魏长春, 吴春亚, 高艳涛, 侯国付, 孙 建, 耿新华, 熊绍珍. VHF-PECVD低温制备微晶硅薄膜的拉曼散射光谱和光发射谱研究. 物理学报, 2005, 54(1): 445-449. doi: 10.7498/aps.54.445
    [20] 封伟, 曹猛, 韦玮, 吴洪才, 万梅香, 吉野胜美. 有机聚合物受体给体复合体薄膜光伏电池性能研究. 物理学报, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
计量
  • 文章访问数:  5122
  • PDF下载量:  622
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-20
  • 修回日期:  2013-07-04
  • 刊出日期:  2013-10-05

/

返回文章
返回