搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于1–10GHz空地链路信号的雨强监测方法可行性研究

安豪 严卫 赵现斌 王少波 吕华平

引用本文:
Citation:

基于1–10GHz空地链路信号的雨强监测方法可行性研究

安豪, 严卫, 赵现斌, 王少波, 吕华平

Feasibility research on the method of rain rate detection based on space-earth link signals at 1–10 GHz

An Hao, Yan Wei, Zhao Xian-Bin, Wang Shao-Bo, Lü Hua-Ping
PDF
导出引用
  • 空地链路上的微波信号受降雨影响, 会产生功率衰减和去极化效应. 基于这些物理特性, 本文提出利用1–10 GHz空地链路信号的降雨干扰项获取雨强的方法, 并开展了相关理论研究. 根据空地链路信号与雨滴复杂的相互作用, 研究了空地链路信号频率为1–10 GHz时, 雨强 (rain rate, R) 对衰减 (attenuation, A) 和交叉极化分辨率 (cross-polarization discrimination, XPD)的影响, 分别建立了A-R和XPD-R关系模型. 通过数值模拟, 分别分析了利用上述两个关系模型估测雨强的可行性, 并系统研究了不同频率、极化方式和仰角条件下的适用性. 研究结果表明, 对于水平极化或圆极化, 且频率较高的空地链路信号, 利用A-R关系反演强降雨具有理论上的可行性; 对于不同频率和极化方式的信号, XPD-R关系模型都可以用于反演雨强, 并且对于1–50 mm·h-1范围内的雨强, XPD较为敏感; 不同仰角条件下, A-R和XPD-R 模型都适用. 在4–10 GHz时, 本文的XPD-R模型和国际电信联盟ITU-R中XPD预测模型的结果非常接近. 所得出的结论对于下一步开展相关的验证实验, 拓展卫星系统的气象应用, 实时估测降雨强度, 实现全球降雨观测具有重要的参考价值.
    Satellite signals across the space-earth link are always seriously affected by rain, inducing attenuation and depolarization. In this paper, two methods of estimating the rain rate are investigated based on the space-earth link signals in a frequency range of 1–10 GHz. Firstly, the effects of rain rate (R) on attenuation (A) and cross-polarization discrimination (XPD) are studied, according to the complex interaction between signals and raindrops. Then, two relevant models A-R and XPD-R are established, which are the key techniques to estimate the rain rate. The feasibilities of the above models are analyzed. In addition, their applicabilities at various frequencies, polarization and satellite elevations are also investigated systematically. The results show that for the space-earth link signal with horizontal or circular polarization and higher frequency, the A-R relation can be used to estimate the heavy rain; for signals with different frequencies and polarizations, XPD-R is suited to estimate various rain rates, especially in a frequency range of 1–50 mm·h-1; A-R and XPD-R are both applicable at different elevations. Moreover, the XPD-R relation is consistent with the prediction model of XPD proposed by ITU at 4–10 GHz. The results obtained in this work will play an important role in the future verification experiment, the nowcasting automatic detection of rain rate and global rain observations.
    [1]

    Amitai E, Nystuen J A, Liao L 2004 IEEE Geosci. Remote Sens. Lett. 1 35

    [2]

    Zhang G F, Vivekanandan J, Brandes E 2000 IEEE Trans. Geosci. Remote Sens. 39 830

    [3]

    Matrosov S Y, Kropfli R A, Martner B E, Reinking R F 1998 Geosci. Remote Sens. Symposium Proceedings 1 446

    [4]

    Jackson C R, Apel J R 2004 Synthetic Aperture Radar Marine User’s Manual (Washington DC: U.S. Department of Commerce) p355

    [5]

    Ali A, Hassan M, Alhaider M 1986 J. Eng. Sci. 12 197

    [6]

    TAUR R R 1975 IEEE Trans. Antennas Propag. 23 854

    [7]

    Messer H, Zinevich A, Alpert P 2006 Sci. 312 713

    [8]

    Goldshtein O, Messer H 2009 IEEE Trans. Signal Process. 57 1616

    [9]

    Li H 2006 Journal of Remote Sensing 10 568 (in Chinese) [李黄 2006 遥感学报 10 568]

    [10]

    Shen Y M 2005 Satellite TV & IP Multimedia 22 48 (in Chinese) [沈永明 2005 卫星电视与宽带多媒体 22 48]

    [11]

    Zhang X Z, Guo Y C, Chen J L, Yang C J 2012 Journal of Applied Meteorological Science 23 478 (in Chinese) [张秀再, 郭业才, 陈金立, 杨昌军 2012 应用气象学报 23 478]

    [12]

    Hegarty C J 2012 IEEE International Baltimore MD, May 21-24, 2012, p1

    [13]

    Huang J Y, Chen X L, Tang Y D, Wang L M 2002 Journal of Xidian University 29 733 (in Chinese) [黄际英, 陈新莲, 唐映德, 王兰美 2002 西安电子科技大学学报 (自然科学版) 29 733]

    [14]

    Rec. ITU-R P840-3 1999

    [15]

    Shen L H, Li X H 2010 Communications Technology 5 79 (in Chinese) [申莉华, 李晓辉 2010 通信技术 5 79 ]

    [16]

    Rec. ITU-R P838-3 2005

    [17]

    Li L W, Kooi P S, Leong M S, Yeo T S, Gao M Z 1995 IEEE Trans. Antennas Propag. 43 811

    [18]

    Flock W L 1987 Propagation effects on satellite systems for frequencies below 10 GHz NASA Ref. Publ. p4-42

    [19]

    Oguchi T 1983 Proc. IEEE 71 1029

    [20]

    Duffo N, Vall·llossera M, Camps A, Corbella I, Torres F 2009 Remote Sens. 1 107

    [21]

    Mishchenko M I, Travis L 1998 J. Quant. Spectrosc. Radiat. Transfer 60 309

    [22]

    Liu X C, Gao T C, Qin J, Liu L 2010 Acta Phys. Sin. 59 2156 (in Chinese) [刘西川, 高太长, 秦建, 刘磊 2010 物理学报 59 2156]

    [23]

    Ray P S 1972 Appl. Opt. 11 1836

    [24]

    Zhao Z W 2001 Ph.D. Dissertation (Xi’an: Xidian University) (in Chinese) [赵振维 2001 博士学位论文 (西安: 西安电子科技大学)]

    [25]

    Hu T, Song H, Yang J H, Niu Z X, Zhou D F, Rao Y P 2007 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Hangzhou, August 16-76, 2007, p761

    [26]

    Rec. ITU-R P.530-9 2001

  • [1]

    Amitai E, Nystuen J A, Liao L 2004 IEEE Geosci. Remote Sens. Lett. 1 35

    [2]

    Zhang G F, Vivekanandan J, Brandes E 2000 IEEE Trans. Geosci. Remote Sens. 39 830

    [3]

    Matrosov S Y, Kropfli R A, Martner B E, Reinking R F 1998 Geosci. Remote Sens. Symposium Proceedings 1 446

    [4]

    Jackson C R, Apel J R 2004 Synthetic Aperture Radar Marine User’s Manual (Washington DC: U.S. Department of Commerce) p355

    [5]

    Ali A, Hassan M, Alhaider M 1986 J. Eng. Sci. 12 197

    [6]

    TAUR R R 1975 IEEE Trans. Antennas Propag. 23 854

    [7]

    Messer H, Zinevich A, Alpert P 2006 Sci. 312 713

    [8]

    Goldshtein O, Messer H 2009 IEEE Trans. Signal Process. 57 1616

    [9]

    Li H 2006 Journal of Remote Sensing 10 568 (in Chinese) [李黄 2006 遥感学报 10 568]

    [10]

    Shen Y M 2005 Satellite TV & IP Multimedia 22 48 (in Chinese) [沈永明 2005 卫星电视与宽带多媒体 22 48]

    [11]

    Zhang X Z, Guo Y C, Chen J L, Yang C J 2012 Journal of Applied Meteorological Science 23 478 (in Chinese) [张秀再, 郭业才, 陈金立, 杨昌军 2012 应用气象学报 23 478]

    [12]

    Hegarty C J 2012 IEEE International Baltimore MD, May 21-24, 2012, p1

    [13]

    Huang J Y, Chen X L, Tang Y D, Wang L M 2002 Journal of Xidian University 29 733 (in Chinese) [黄际英, 陈新莲, 唐映德, 王兰美 2002 西安电子科技大学学报 (自然科学版) 29 733]

    [14]

    Rec. ITU-R P840-3 1999

    [15]

    Shen L H, Li X H 2010 Communications Technology 5 79 (in Chinese) [申莉华, 李晓辉 2010 通信技术 5 79 ]

    [16]

    Rec. ITU-R P838-3 2005

    [17]

    Li L W, Kooi P S, Leong M S, Yeo T S, Gao M Z 1995 IEEE Trans. Antennas Propag. 43 811

    [18]

    Flock W L 1987 Propagation effects on satellite systems for frequencies below 10 GHz NASA Ref. Publ. p4-42

    [19]

    Oguchi T 1983 Proc. IEEE 71 1029

    [20]

    Duffo N, Vall·llossera M, Camps A, Corbella I, Torres F 2009 Remote Sens. 1 107

    [21]

    Mishchenko M I, Travis L 1998 J. Quant. Spectrosc. Radiat. Transfer 60 309

    [22]

    Liu X C, Gao T C, Qin J, Liu L 2010 Acta Phys. Sin. 59 2156 (in Chinese) [刘西川, 高太长, 秦建, 刘磊 2010 物理学报 59 2156]

    [23]

    Ray P S 1972 Appl. Opt. 11 1836

    [24]

    Zhao Z W 2001 Ph.D. Dissertation (Xi’an: Xidian University) (in Chinese) [赵振维 2001 博士学位论文 (西安: 西安电子科技大学)]

    [25]

    Hu T, Song H, Yang J H, Niu Z X, Zhou D F, Rao Y P 2007 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Hangzhou, August 16-76, 2007, p761

    [26]

    Rec. ITU-R P.530-9 2001

  • [1] 武丽敏, 徐德刚, 王与烨, 葛梅兰, 李海滨, 王泽龙, 姚建铨. 共光路连续太赫兹反射和衰减全反射成像. 物理学报, 2021, 70(11): 118701. doi: 10.7498/aps.70.20210182
    [2] 宋堃, 高太长, 刘西川, 印敏, 薛杨. 基于非球形雨衰模型的微波链路雨强反演方法. 物理学报, 2017, 66(15): 154301. doi: 10.7498/aps.66.154301
    [3] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感. 物理学报, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [4] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [5] 李凯彦, 赵兴群, 孙小菡, 万遂人. 一种用于光纤链路振动信号模式识别的规整化复合特征提取方法. 物理学报, 2015, 64(5): 054304. doi: 10.7498/aps.64.054304
    [6] 宋堃, 高太长, 刘西川, 印敏, 薛杨. 基于支持向量机的微波链路雨强反演方法. 物理学报, 2015, 64(24): 244301. doi: 10.7498/aps.64.244301
    [7] 高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰. 基于微波链路的路径雨强反演方法及实验研究. 物理学报, 2015, 64(17): 174301. doi: 10.7498/aps.64.174301
    [8] 陆文, 严卫, 艾未华, 施健康. 星载极化相关型全极化微波辐射计天线交叉极化校正技术 (II) : 校正试验. 物理学报, 2013, 62(7): 078403. doi: 10.7498/aps.62.078403
    [9] 郑晶晶, 简水生, 马林, 柏云龙, 裴丽, 宁提纲, 闻映红. 具有大范围高分辨率线性响应特性的超短无芯光纤溶液折射率传感器. 物理学报, 2013, 62(15): 150703. doi: 10.7498/aps.62.150703
    [10] 刘鎏, 郑建宇, 张明江, 孟丽娜, 张朝霞, 王云才. 混沌超宽带信号的光学产生及其链路传输. 物理学报, 2012, 61(8): 084204. doi: 10.7498/aps.61.084204
    [11] 王平建, 夏继宏, 刘长松, 刘会, 闫龙. 一维复合颗粒链中能量衰减的动力学分析. 物理学报, 2011, 60(1): 014501. doi: 10.7498/aps.60.014501
    [12] 张景川, 袁萍, 欧阳玉花. 雷声在大气中传播的吸收衰减特性研究. 物理学报, 2010, 59(11): 8287-8392. doi: 10.7498/aps.59.8287
    [13] 高晓峰, 徐之海, 冯华君, 李奇. 振幅指数衰减正弦干涉信号线性预测模型的求解. 物理学报, 2009, 58(10): 6719-6724. doi: 10.7498/aps.58.6719
    [14] 葛广顶, 王秉中, 黄海燕, 郑罡. 时间反演电磁波超分辨率特性. 物理学报, 2009, 58(12): 8249-8253. doi: 10.7498/aps.58.8249
    [15] 陈世国, 吉世印, 刘万松. 基于小波分析的指数衰减信号高斯脉冲成形. 物理学报, 2008, 57(5): 2882-2887. doi: 10.7498/aps.57.2882
    [16] 杨 涓, 朱 冰, 毛根旺, 许映乔, 刘俊平. 真空中不同极化电磁波在微波等离子体喷流中的衰减特性实验研究. 物理学报, 2007, 56(12): 7120-7126. doi: 10.7498/aps.56.7120
    [17] 李齐良, 朱海东, 李院民, 唐向宏, 林理彬. 集总式放大波分复用链路中交叉相位调制的边带不稳定性. 物理学报, 2005, 54(6): 2686-2693. doi: 10.7498/aps.54.2686
    [18] 卞保民, 杨 玲, 李振华, 陈 笑, 贺安之, 沈中华. 衰减球面冲击波波阵面自模拟运动特性. 物理学报, 2004, 53(3): 840-843. doi: 10.7498/aps.53.840
    [19] 李齐良, 朱海东, 唐向宏, 李承家, 王小军, 林理彬. 有源光放大器链路中交叉相位调制的不稳定性. 物理学报, 2004, 53(12): 4194-4201. doi: 10.7498/aps.53.4194
    [20] 汪芙平, 郭静波, 王赞基, 萧达川, 李茂堂. 强混沌干扰中的谐波信号提取. 物理学报, 2001, 50(6): 1019-1023. doi: 10.7498/aps.50.1019
计量
  • 文章访问数:  4553
  • PDF下载量:  429
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-23
  • 修回日期:  2013-05-23
  • 刊出日期:  2013-10-05

/

返回文章
返回