搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锥束CT平板探测器成像的余晖建模与校正方法

黄魁东 张定华 李明君 张华

引用本文:
Citation:

锥束CT平板探测器成像的余晖建模与校正方法

黄魁东, 张定华, 李明君, 张华

Image lag modeling and correction method for flat panel detector in cone-beam CT

Huang Kui-Dong, Zhang Ding-Hua, Li Ming-Jun, Zhang Hua
PDF
导出引用
  • 锥束CT具有高效率和高精度的显著特点, 在医学成像与工业无损检测等领域已得到广泛应用, 但余晖的存在降低了CT图像的质量. 本文借鉴余晖多指数衰减模型的思想, 结合平板探测器输出信号的实际衰减规律, 提出了一种新的基于多指数拟合的余晖衰减建模及校正方法. 首先进行了基于平板探测器的锥束CT成像实验, 结果表明平板探测器各像素的余晖衰减规律具有良好的一致性, 且余晖衰减规律与初始灰度的大小无关; 其后根据建立的余晖衰减模型实现了余晖的快速校正, 并分析比较了余晖校正前后投影图像和切片图像质量, 表明余晖校正后的零件轮廓清晰度得到了显著提升. 该方法无需获取探测器闪烁体成分及其衰减时间常数, 便于实际锥束CT成像系统的余晖检测与校正.
    Cone-beam computed tomography (CT) has the notable features, viz high efficiency and high precision, and is widely used in the areas such as medical imaging and industrial non-destructive testing, but the presence of image lag reduces the quality of CT images. By referencing the multi-exponential decay model for the image lag and combining with the actual decay rule of the flat panel detector output signal, a new decay modeling and correction method for the image lag based on multi-exponential fitting is proposed. Firstly, an imaging experiment using cone-beam CT based on flat panel detector is carried out; the results show that the image lag decay of the pixels in the flat panel detector has a good consistency, and is irrelevant to the initial gray value. Then, the rapid image lag correction is achieved according to the image lag decay model, and the comparison of image quality of the projected images and slice images before and after image lag correction indicates that the edge sharpness of the part has been significantly improved after the lag correction. This method does not need to obtain the scintillation compositions and the decay time constants of the detector, and is easily applied to the practical cone-beam CT imaging systems for image lag detection and correction.
    • 基金项目: 国家科技重大专项 (批准号: 2012ZX04007021)、国家自然科学基金青年科学基金 (批准号: 51105315)、陕西省自然科学基础研究计划 (批准号: 2013JM7003)和西北工业大学基础研究基金 (批准号: JC20110253, JC20120226) 资助的课题.
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (Grant No. 2012ZX04007021), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51105315), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2013JM7003), and the Northwestern Polytechnical University Foundation for Fundamental Research, China (Grant Nos. JC20110253, JC20120226).
    [1]

    Luo Z Y, Yang X Q, Meng Y Z, Deng Y 2010 Acta Phys. Sin. 59 8237 (in Chinese) [罗召洋, 杨孝全, 孟远征, 邓勇 2010 物理学报 59 8237]

    [2]

    Wang X C, Yan B, Liu H K, Li L, Wei X, Hu G E 2013 Acta Phys. Sin. 62 098702 (in Chinese) [汪先超, 闫镔, 刘宏奎, 李磊, 魏星, 胡国恩 2013 物理学报 62 098702]

    [3]

    Kasap S, Frey J B, Belev G, Tousignant O, Mani H, Greenspan J, Laperriere L, Bubon O, Reznik A, DeCrescenzo G, Karim K S, Rowlands J A 2011 Sensors 11 5112

    [4]

    Hsieh J, Gurmen O E, King K F 1999 Radiology 213 318

    [5]

    Hsieh J, Gurmen O E, King K F 2000 IEEE Trans. Med. Img. 19 930

    [6]

    Lei Y H, Liu X, Guo J C, Zhao Z G, Niu H B 2011 Chin. Phys. B 20 042901

    [7]

    Benítez R B, Ning R, Conover D 2006 Proceedings of SPIE Medical Imaging 2006: Physics of Medical Imaging San Diego, USA, February 12–16, 2006 p61422K

    [8]

    Hofmann T, Burtzlaff S, Voland V, Salamon M, Nachtrab F, Sukowski F, Uhlmann N 2009 Nuclear Instruments and Methods in Physics Research A 607 187

    [9]

    Mainprize J G, Wang X Y, Yaffe M J 2009 Proceedings of SPIE Medical Imaging 2009: Physics of Medical Imaging Orlando, USA, February 7–12, 2009 p72580R

    [10]

    Colbeth R E, Mollov I P, Roos P G, Shapiro E G 2005 Proceedings of SPIE Medical Imaging 2005: Physics of Medical Imaging San Diego, USA, February 15–17, 2005 p387

    [11]

    Zhang Y, Ning R, Conover D 2006 Proceedings of SPIE Medical Imaging 2006: Physics of Medical Imaging San Diego, USA, February 12–16, 2006 p61420Z

    [12]

    Tanaka R, Ichikawa K, Mori S, Dobashi S, Kumagaya M, Kawashima H, Morita S, Sanada S 2010 Proceedings of SPIE Medical Imaging 2010: Physics of Medical Imaging San Diego, USA, February 15–18, 2010 p76224S

    [13]

    Carton A K, Puong S, Iordache R, Muller S 2011 Proceedings of SPIE Medical Imaging 2011: Physics of Medical Imaging Orlando, USA, February 13–17, 2011 p79611D

    [14]

    Mail N, O’Brien P, Pang G 2007 J. Appl. Clin. Med. Phys. 8 2483

    [15]

    Mail N, Moseley D J, Siewerdsen J H, Jaffray D A 2008 Med. Phys. 35 5187

  • [1]

    Luo Z Y, Yang X Q, Meng Y Z, Deng Y 2010 Acta Phys. Sin. 59 8237 (in Chinese) [罗召洋, 杨孝全, 孟远征, 邓勇 2010 物理学报 59 8237]

    [2]

    Wang X C, Yan B, Liu H K, Li L, Wei X, Hu G E 2013 Acta Phys. Sin. 62 098702 (in Chinese) [汪先超, 闫镔, 刘宏奎, 李磊, 魏星, 胡国恩 2013 物理学报 62 098702]

    [3]

    Kasap S, Frey J B, Belev G, Tousignant O, Mani H, Greenspan J, Laperriere L, Bubon O, Reznik A, DeCrescenzo G, Karim K S, Rowlands J A 2011 Sensors 11 5112

    [4]

    Hsieh J, Gurmen O E, King K F 1999 Radiology 213 318

    [5]

    Hsieh J, Gurmen O E, King K F 2000 IEEE Trans. Med. Img. 19 930

    [6]

    Lei Y H, Liu X, Guo J C, Zhao Z G, Niu H B 2011 Chin. Phys. B 20 042901

    [7]

    Benítez R B, Ning R, Conover D 2006 Proceedings of SPIE Medical Imaging 2006: Physics of Medical Imaging San Diego, USA, February 12–16, 2006 p61422K

    [8]

    Hofmann T, Burtzlaff S, Voland V, Salamon M, Nachtrab F, Sukowski F, Uhlmann N 2009 Nuclear Instruments and Methods in Physics Research A 607 187

    [9]

    Mainprize J G, Wang X Y, Yaffe M J 2009 Proceedings of SPIE Medical Imaging 2009: Physics of Medical Imaging Orlando, USA, February 7–12, 2009 p72580R

    [10]

    Colbeth R E, Mollov I P, Roos P G, Shapiro E G 2005 Proceedings of SPIE Medical Imaging 2005: Physics of Medical Imaging San Diego, USA, February 15–17, 2005 p387

    [11]

    Zhang Y, Ning R, Conover D 2006 Proceedings of SPIE Medical Imaging 2006: Physics of Medical Imaging San Diego, USA, February 12–16, 2006 p61420Z

    [12]

    Tanaka R, Ichikawa K, Mori S, Dobashi S, Kumagaya M, Kawashima H, Morita S, Sanada S 2010 Proceedings of SPIE Medical Imaging 2010: Physics of Medical Imaging San Diego, USA, February 15–18, 2010 p76224S

    [13]

    Carton A K, Puong S, Iordache R, Muller S 2011 Proceedings of SPIE Medical Imaging 2011: Physics of Medical Imaging Orlando, USA, February 13–17, 2011 p79611D

    [14]

    Mail N, O’Brien P, Pang G 2007 J. Appl. Clin. Med. Phys. 8 2483

    [15]

    Mail N, Moseley D J, Siewerdsen J H, Jaffray D A 2008 Med. Phys. 35 5187

  • [1] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧. 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器. 物理学报, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [2] 陈翠红, 李占奎, 王秀华, 李荣华, 方芳, 王柱生, 李海霞. 高性能PIN-硅探测器的研制及其在高能放射性核束实验中的应用测试. 物理学报, 2023, 72(12): 122902. doi: 10.7498/aps.72.20230213
    [3] 周腊珍, 夏文静, 许倩倩, 陈赞, 李坊佐, 刘志国, 孙天希. 一种基于毛细管X光透镜的微型锥束CT扫描仪. 物理学报, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [4] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器. 物理学报, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [5] 李杭, 陈萍, 田进寿. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210871
    [6] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [7] 温志文, 祁辉荣, 张余炼, 王海云, 刘凌, 王艳凤, 张建, 李玉红, 孙志嘉. 用于中国散裂中子源多功能反射谱仪的高气压多丝正比室探测器的研制. 物理学报, 2018, 67(7): 072901. doi: 10.7498/aps.67.20172618
    [8] 温志文, 祁辉荣, 王艳凤, 孙志嘉, 张余炼, 王海云, 张建, 欧阳群, 陈元柏, 李玉红. 二维多丝室探测器读出方法的优化. 物理学报, 2017, 66(7): 072901. doi: 10.7498/aps.66.072901
    [9] 夏茂鹏, 李健军, 高冬阳, 胡友勃, 盛文阳, 庞伟伟, 郑小兵. 基于相关光子多模式相关性的InSb模拟探测器定标方法. 物理学报, 2015, 64(24): 240601. doi: 10.7498/aps.64.240601
    [10] 韩玉, 李磊, 闫镔, 席晓琦, 胡国恩. 一种基于Radon逆变换的半覆盖螺旋锥束CT重建算法. 物理学报, 2015, 64(5): 058704. doi: 10.7498/aps.64.058704
    [11] 汪先超, 闫镔, 刘宏奎, 李磊, 魏星, 胡国恩. 一种圆轨迹锥束CT中截断投影数据的高效重建算法. 物理学报, 2013, 62(9): 098702. doi: 10.7498/aps.62.098702
    [12] 张峰, 闫镔, 汪先超, 江桦, 魏星. 半覆盖锥束CT中扁平物体的高效反投影滤波重建. 物理学报, 2013, 62(16): 168702. doi: 10.7498/aps.62.168702
    [13] 陈世国, 吉世印, 刘万松. 基于小波分析的指数衰减信号高斯脉冲成形. 物理学报, 2008, 57(5): 2882-2887. doi: 10.7498/aps.57.2882
    [14] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器. 物理学报, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [15] 欧阳晓平, 王 兰, 范如玉, 张忠兵, 王 伟, 吕反修, 唐伟忠, 陈广超. 金刚石膜探测器研制. 物理学报, 2006, 55(5): 2170-2174. doi: 10.7498/aps.55.2170
    [16] 王海宇, 黄世华. 非指数光子回波衰减的理论研究. 物理学报, 1997, 46(6): 1108-1113. doi: 10.7498/aps.46.1108
    [17] 徐锋, 刘辽. 瞬时响应的粒子探测器模型. 物理学报, 1988, 37(8): 1267-1274. doi: 10.7498/aps.37.1267
    [18] 徐平茂. 体吸收、边电极热电探测器的分析. 物理学报, 1980, 29(11): 1445-1451. doi: 10.7498/aps.29.1445
    [19] 陈继述. 红外薄膜热电探测器分析. 物理学报, 1974, 23(6): 51-58. doi: 10.7498/aps.23.51
    [20] А.Ф.杜纳耶切夫, Ю.Д.布罗高舒金, 唐孝威. π-介子星裂探测器. 物理学报, 1960, 16(8): 471-478. doi: 10.7498/aps.16.471
计量
  • 文章访问数:  6105
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-04
  • 修回日期:  2013-07-19
  • 刊出日期:  2013-11-05

/

返回文章
返回