搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于1550 nm垂直腔面发射激光器的长距离双向双信道光纤混沌保密通信研究

赵艳梅 夏光琼 吴加贵 吴正茂

引用本文:
Citation:

基于1550 nm垂直腔面发射激光器的长距离双向双信道光纤混沌保密通信研究

赵艳梅, 夏光琼, 吴加贵, 吴正茂

Investigation of bidirectional dual-channel long-distance chaos secure communication based on 1550nm vertical-cavity surface-emitting lasers

Zhao Yan-Mei, Xia Guang-Qiong, Wu Jia-Gui, Wu Zheng-Mao
PDF
导出引用
  • 基于同一混沌信号光注入下两个1550 nm垂直腔面发射激光器 (VCSELs) 中两对应线性偏振模式之间的混沌同步, 提出了一种可实现信息的长距离双向双信道光纤混沌保密通信的系统模型, 并对该系统的同步、双向双信道通信以及光纤信道对信息传输的影响等性能进行了相关仿真研究. 结果表明: 在由驱动混沌激光器所产生的同一混沌光注入下, 两响应激光器中对应的两线偏振模式之间均可实现高质量的等时混沌同步, 且驱动激光器与两响应激光器间的同步系数较低; 基于两响应激光器之间对应线偏振模式的高质量混沌同步, 可实现双向双信道混沌通信; 采用单模保偏光纤 (或色散位移保偏光纤) 作为通信信道, 2.5 Gbit/s信息在传输60 km (或200 km) 后解调信息的Q因子能保持在6以上.
    Based on the chaos synchronization between two pairs of corresponding linear polarization modes in two 1550 nm vertical-cavity surface-emitting lasers (1550 nm-VCSELs) subject to optical injection of common chaotic signals, a novel bidirectional and dual-channel long-distance chaos secure communication system is proposed. The chaotic synchronization characteristics, bidirectional dual-channel communication performance, and the influences of the fiber channel on the message transmission are numerically investigated. Results show that, driven by a common chaotic signal generated from a driver VCSEL (D-VCSEL), two pairs of responding linear polarization modes in two response 1550nm-VCSELs (R-VCSELs) can be synchronized completely and isochronally. Meanwhile, the synchronization coefficients between the two pairs of responding linear polarization modes in D-VCSEL and R-VCSELs are low. Based on the high quality chaos synchronization between two pairs of responding linear modes in two R-VCSELs, bidirectional and dual-channel chaos secure communication can be achieved. After adopting a single mode polarization-maintaining fiber (or dispersion-shifted polarization-maintaining fiber), for 2.5 Gbit/s messages, the Q factor of the decryption signals after transmitting 60 km (or 200 km) can be more than 6.
    • 基金项目: 国家自然科学基金 (批准号: 60978003, 61078003, 61178011, 61275116) 和重庆市自然科学基金(批准号: 2012jjB40011) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60978003, 61078003, 61178011, 61275116), and the Natural Science Foundation of Chongqing City, China (Grant No. 2012jjB40011).
    [1]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [2]

    Roy R, Thornburg K S 1994 Phys. Rev. Lett. 72 2009

    [3]

    Mirasso R C, Colet P, Garcia-Fernandez P 1996 IEEE Photon. Technol. Lett. 8 299

    [4]

    Wang Y C, Li Y L, Wang A B, Wang B J, Zhang G W, Guo P 2007 Acta Phys. Sin. 56 4686 (in Chinese) [王云才, 李艳丽, 王安邦, 张耕玮, 郭萍 2007 物理学报 56 4686]

    [5]

    Yan S L 2008 Acta Phys. Sin. 57 2819 (in Chinese) [颜森林 2008 物理学报 61 2819]

    [6]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [7]

    Zhang J Z, Wang A B, Wang J F, Wang Y C 2009 Opt. Express 17 6357

    [8]

    Zhang J Z, Wang A B, Wang Y C 2009 Acta Phys. Sin. 58 3793 (in Chinese) [张建忠, 王安帮, 王云才 2009 物理学报 58 3793]

    [9]

    Liu H J, Feng J C 2009 Acta Phy. Sin. 58 1484 (in Chinese) [刘慧杰, 冯久超 2009 物理学报 58 1484]

    [10]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [11]

    Zhao Q, Yin H, Chen X, 2012 Appl. Opt. 51 5585

    [12]

    Hu H P, Yu Z L, Liu L F 2012 Acta Phy. Sin. 61 190504 (in Chinese) [胡汉平, 于志良, 刘凌锋 2012 物理学报 61 190504]

    [13]

    Klein E, Gross N, Kopelowitz E, Rosenbluh M, Khaykovich L, Kinzel W, Kanter I 2006 Phys. Rev. E 74 046201

    [14]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237

    [15]

    Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243

    [16]

    Deng T, Xia G Q, Wu Z M, Lin X D, Wu J G 2011 Opt. Express. 19 8762

    [17]

    Yamamoto T, Oowada I, Yip H, Uchida A, Yoshimori S, Yoshimura K, Muramatsu J, Goto S, Davis P 2007 Opt. Express 15 3974

    [18]

    Annovazzi-Lodi V, Aromataris G, Benedetti M, Hamacher M, Merlo S, Vercesi V 2010 IEEE J. Quantum Electron. 42 143

    [19]

    Wu J G, Wu Z M, Xia G Q, Deng T, Lin X D, Tang X, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 1854

    [20]

    Wu J G, Wu Z M, Tang X, Fan L, Deng W, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587

    [21]

    Li P, Wu J G, Wu Z M, Lin X D, Deng D, Liu Y R, Xia G Q 2011 Opt. Express 19 2392

    [22]

    Xiao Y, Deng T, Wu Z M, Wu J G, Lin X D, Tang X, Zeng L B, Xia G Q 2012 Opt. Commun. 285 1442

    [23]

    Jiang N, Pan W, Luo B, Xiang S Y, Yang L, 2012 IEEE Photon. Technol. Lett. 24 1094

    [24]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [25]

    Agrawal G P 2001 Nonlinear Fiber Optics (3rd Edn) (California: Academic Press) p49

    [26]

    Bergano N S, Kerfoot F W, Davidson C R 1993 IEEE Photon. Technol. Lett. 5 304

    [27]

    Bogris A, Kanakidis D, Argyris A, Syvridis D 2004 IEEE J. Quantum Electron. 40 1326

    [28]

    Zheng A J, Wu Z M, Deng T, Li X J, Xia G Q 2012 Acta Phys. Sin. 61 234203 (in Chinese) [郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼 2012 物理学报 61 234203]

    [29]

    Nguimdo R M, Lavrov R, Colet P, Jacquot M, Chembo Y K, Larger L 2010 J. Lightw. Technol. 28 2688

    [30]

    Wu J G, Wu Z M, Liu Y R, Fan L, Tang X, Xia G Q 2013 J. Lightw. Technol. 31 461

  • [1]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [2]

    Roy R, Thornburg K S 1994 Phys. Rev. Lett. 72 2009

    [3]

    Mirasso R C, Colet P, Garcia-Fernandez P 1996 IEEE Photon. Technol. Lett. 8 299

    [4]

    Wang Y C, Li Y L, Wang A B, Wang B J, Zhang G W, Guo P 2007 Acta Phys. Sin. 56 4686 (in Chinese) [王云才, 李艳丽, 王安邦, 张耕玮, 郭萍 2007 物理学报 56 4686]

    [5]

    Yan S L 2008 Acta Phys. Sin. 57 2819 (in Chinese) [颜森林 2008 物理学报 61 2819]

    [6]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [7]

    Zhang J Z, Wang A B, Wang J F, Wang Y C 2009 Opt. Express 17 6357

    [8]

    Zhang J Z, Wang A B, Wang Y C 2009 Acta Phys. Sin. 58 3793 (in Chinese) [张建忠, 王安帮, 王云才 2009 物理学报 58 3793]

    [9]

    Liu H J, Feng J C 2009 Acta Phy. Sin. 58 1484 (in Chinese) [刘慧杰, 冯久超 2009 物理学报 58 1484]

    [10]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [11]

    Zhao Q, Yin H, Chen X, 2012 Appl. Opt. 51 5585

    [12]

    Hu H P, Yu Z L, Liu L F 2012 Acta Phy. Sin. 61 190504 (in Chinese) [胡汉平, 于志良, 刘凌锋 2012 物理学报 61 190504]

    [13]

    Klein E, Gross N, Kopelowitz E, Rosenbluh M, Khaykovich L, Kinzel W, Kanter I 2006 Phys. Rev. E 74 046201

    [14]

    Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237

    [15]

    Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243

    [16]

    Deng T, Xia G Q, Wu Z M, Lin X D, Wu J G 2011 Opt. Express. 19 8762

    [17]

    Yamamoto T, Oowada I, Yip H, Uchida A, Yoshimori S, Yoshimura K, Muramatsu J, Goto S, Davis P 2007 Opt. Express 15 3974

    [18]

    Annovazzi-Lodi V, Aromataris G, Benedetti M, Hamacher M, Merlo S, Vercesi V 2010 IEEE J. Quantum Electron. 42 143

    [19]

    Wu J G, Wu Z M, Xia G Q, Deng T, Lin X D, Tang X, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 1854

    [20]

    Wu J G, Wu Z M, Tang X, Fan L, Deng W, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587

    [21]

    Li P, Wu J G, Wu Z M, Lin X D, Deng D, Liu Y R, Xia G Q 2011 Opt. Express 19 2392

    [22]

    Xiao Y, Deng T, Wu Z M, Wu J G, Lin X D, Tang X, Zeng L B, Xia G Q 2012 Opt. Commun. 285 1442

    [23]

    Jiang N, Pan W, Luo B, Xiang S Y, Yang L, 2012 IEEE Photon. Technol. Lett. 24 1094

    [24]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [25]

    Agrawal G P 2001 Nonlinear Fiber Optics (3rd Edn) (California: Academic Press) p49

    [26]

    Bergano N S, Kerfoot F W, Davidson C R 1993 IEEE Photon. Technol. Lett. 5 304

    [27]

    Bogris A, Kanakidis D, Argyris A, Syvridis D 2004 IEEE J. Quantum Electron. 40 1326

    [28]

    Zheng A J, Wu Z M, Deng T, Li X J, Xia G Q 2012 Acta Phys. Sin. 61 234203 (in Chinese) [郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼 2012 物理学报 61 234203]

    [29]

    Nguimdo R M, Lavrov R, Colet P, Jacquot M, Chembo Y K, Larger L 2010 J. Lightw. Technol. 28 2688

    [30]

    Wu J G, Wu Z M, Liu Y R, Fan L, Tang X, Xia G Q 2013 J. Lightw. Technol. 31 461

  • [1] 党俊坡, 江秀娟, 唐振华. 光纤基底TiNi形状记忆合金薄膜制备工艺. 物理学报, 2022, 71(3): 030701. doi: 10.7498/aps.71.20211437
    [2] 林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起. 三端口光纤耦合原子气室探头的开发及其微波数字通信应用. 物理学报, 2022, 71(17): 170702. doi: 10.7498/aps.71.20220594
    [3] 党俊坡, 江秀娟, 唐振华. 光纤基底TiNi形状记忆合金薄膜制备工艺研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211437
    [4] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制. 物理学报, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [5] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [6] 唐良瑞, 樊冰, 亢中苗. 利用混沌信号幅值实现混沌同步. 物理学报, 2012, 61(8): 080508. doi: 10.7498/aps.61.080508
    [7] 刘宇然, 吴正茂, 吴加贵, 李萍, 夏光琼. 一种新型的双向长距离光纤混沌保密通信系统性能研究. 物理学报, 2012, 61(2): 024203. doi: 10.7498/aps.61.024203
    [8] 丁灵, 吴正茂, 吴加贵, 夏光琼. 基于双光反馈半导体激光器的单向开环混沌同步通信. 物理学报, 2012, 61(1): 014212. doi: 10.7498/aps.61.014212
    [9] 杨磊, 马晓欣, 崔亮, 郭学石, 李小英. 基于色散位移光纤的高宣布式窄带单光子源. 物理学报, 2011, 60(11): 114206. doi: 10.7498/aps.60.114206
    [10] 郭文华, 王鸣, 夏巍, 戴丽华, 崔恩营, 倪海彬. 基于光纤的三维可调胶体光子晶体. 物理学报, 2011, 60(12): 124213. doi: 10.7498/aps.60.124213
    [11] 胡志辉, 冯久超. 基于UKF的多用户混沌通信. 物理学报, 2011, 60(7): 070505. doi: 10.7498/aps.60.070505
    [12] 白鹭, 郭静波. 多径衰落信道下混沌直扩通信的可破解性. 物理学报, 2011, 60(7): 070504. doi: 10.7498/aps.60.070504
    [13] 赵丽娟. 环境温度宽范围变化对光纤布里渊频移的影响. 物理学报, 2010, 59(9): 6219-6223. doi: 10.7498/aps.59.6219
    [14] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响. 物理学报, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [15] 郭东明, 杨玲珍, 王安帮, 张秀娟, 王云才. 反馈强度调制增强混沌光通信的保密性. 物理学报, 2009, 58(12): 8275-8280. doi: 10.7498/aps.58.8275
    [16] 杨 磊, 李小英, 王宝善. 利用光纤中自发四波混频产生纠缠光子的实验装置. 物理学报, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [17] 范永全, 张家树. 基于集员估计的混沌通信窄带干扰抑制技术. 物理学报, 2008, 57(5): 2714-2721. doi: 10.7498/aps.57.2714
    [18] 颜森林. 光纤混沌双芯双向保密通信系统研究. 物理学报, 2008, 57(5): 2819-2826. doi: 10.7498/aps.57.2819
    [19] 颜森林. 混沌信号在光纤传输过程中的非线性演化. 物理学报, 2007, 56(4): 1994-2004. doi: 10.7498/aps.56.1994
    [20] 庄 飞, 沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究. 物理学报, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
计量
  • 文章访问数:  4830
  • PDF下载量:  457
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-04
  • 修回日期:  2013-06-24
  • 刊出日期:  2013-11-05

/

返回文章
返回