搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多金属物体CT图像的金属伪影校正

魏星 闫镔 张峰 李永丽 席晓琦 李磊

引用本文:
Citation:

多金属物体CT图像的金属伪影校正

魏星, 闫镔, 张峰, 李永丽, 席晓琦, 李磊

Reduction of metal artifacts caused by multiple metallic objects in computed tomography

Wei Xing, Yan Bin, Zhang Feng, Li Yong-Li, Xi Xiao-Qi, Li Lei
PDF
导出引用
  • 针对多金属伪影的校正问题,本文通过仿真实验分析了多金属伪影的成因,并提出了一种基于投影校正的多金属伪影校正方法. 该方法首先直接从投影域分割出金属区域,然后建立对金属区域投影值的校正模型,最后通过调整模型参数达到校正目的. 模型以重建图像的灰度熵为目标函数,采用单纯形法迭代求解使熵最小时的校正参数. 仿真和实际数据的实验结果表明,本文算法对多金属伪影的校正起到了良好的效果,且校正后的图像质量优于插值校正法.
    High-attenuation objects like metals will result in metal artifacts in computed tomography images. Compared with single metallic object, artifacts due to multiple and large-scaled metallic objects is more complicated in representation and have much worse effects on reconstructed image. State-of-the-art metal artifacts reduction for multiple metal objects based on interpolation method cannot solve the beam hardening inside the metals, and can easily make mistakes in segmentation and interpolation. Aiming at reduction of multiple metallic objects, this paper simulates the production of the artifacts and proposes a metal artifacts reduction method based on projections correction. In this method, metal regions are firstly segmented directly from projection domain, and then a correction model is established for projections in metal regions. Finally, correction is made by adjusting parameters of the model. The optimal solution of the parameters is achieved by NM-simplex method that makes the gray entropy of the reconstructed image minimum. The simulation results and obtained data show that the present method significantly improves metal artifact due to multiple metallic objects and provides a better image quality than that obtained using interpolation.
    • 基金项目: 国家高技术研究发展计划(批准号:2012AA011603)和国家自然科学基金(批准号:61372172)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA011603), and the National Natural Science Foundation of China(Grant No.61372172).
    [1]

    Jia P X, Zhang F, Yan B, Bao S L 2010 Chin. Phys. B 19 087802

    [2]

    Karimi S, Cosman P, Wald C, Martz H 2012 Med. Phys. 39 5857

    [3]

    Joemai R M, Bruin P W, Veldkamp W J, Geleijns J 2012 Med. Phys. 39 1125

    [4]

    Wang G, Snyder D L, O'Sullivan J A, Vannier M W 1996 IEEE Trans. Med. Imaging 15 657

    [5]

    Wang G, Frei T, Vannier M W 2000 Acad. Radiol. 7 607

    [6]

    Slambrouck K V, Nuyts J 2012 Med. Phys. 39 7080

    [7]

    Oehler M, Buzug T M 2007 Adv. Med. Eng. 114 42

    [8]

    Lemmens C, Faul D, Nuyts J 2009 IEEE Trans. Med. Imaging 28 250

    [9]

    Xia D, Roeske J C, Yu L F, Pelizzari C A, Mundt A J, Pan X C 2005 Brachytherapy 4 18

    [10]

    Mouton A, Megherbi N, Slambrouck K V, Nuyts J, Breckon T P 2013 J. X-ray Sci. Technol. 21 193

    [11]

    Abdoli M, Ay M R, Ahmadian A, Zaidi H 2010 Med. Phys. 37 6166

    [12]

    Jeong K Y, Ra J B 2009 SPIE Medical Imaging. International Society for Optics and Photonics United States, San Diego, August 2-6, 2009 p7258

    [13]

    Zhao S Y, Bae K T, Whiting B, Wang G 2002 J. X-ray Sci. Technol. 10 67

    [14]

    Kratz B, Knopp T, Muller J, Oehler M, Buzug T M 2008 Bildverarbeitung fur die Medizin Germany, Berlin, April 2-6, 2008 p21

    [15]

    Man B D 2001 Ph. D. Dissertation (Leuven:Katholieke University)

    [16]

    Verburg J M, Seco J 2012 Phys. Med. Biol. 57 2803

    [17]

    Zhao S, Robeltson D D, Wang G, Whiting B, Bae K T 2000 IEEE Trans. Med. Imaging. 19 1238

    [18]

    NelderJ A, Mead R 1965 Comput. J. 7 308

    [19]

    Meyer E, Raupach R, Lell M 2012 Med. Phys. 39 1904

    [20]

    Hargreaves B A, Chen W T, Lu W M, Alley M T, Gold G E, Brau A C, Pauly J M, Pauly K B 2010 J. Magn. Reson. Imaging 31 987

  • [1]

    Jia P X, Zhang F, Yan B, Bao S L 2010 Chin. Phys. B 19 087802

    [2]

    Karimi S, Cosman P, Wald C, Martz H 2012 Med. Phys. 39 5857

    [3]

    Joemai R M, Bruin P W, Veldkamp W J, Geleijns J 2012 Med. Phys. 39 1125

    [4]

    Wang G, Snyder D L, O'Sullivan J A, Vannier M W 1996 IEEE Trans. Med. Imaging 15 657

    [5]

    Wang G, Frei T, Vannier M W 2000 Acad. Radiol. 7 607

    [6]

    Slambrouck K V, Nuyts J 2012 Med. Phys. 39 7080

    [7]

    Oehler M, Buzug T M 2007 Adv. Med. Eng. 114 42

    [8]

    Lemmens C, Faul D, Nuyts J 2009 IEEE Trans. Med. Imaging 28 250

    [9]

    Xia D, Roeske J C, Yu L F, Pelizzari C A, Mundt A J, Pan X C 2005 Brachytherapy 4 18

    [10]

    Mouton A, Megherbi N, Slambrouck K V, Nuyts J, Breckon T P 2013 J. X-ray Sci. Technol. 21 193

    [11]

    Abdoli M, Ay M R, Ahmadian A, Zaidi H 2010 Med. Phys. 37 6166

    [12]

    Jeong K Y, Ra J B 2009 SPIE Medical Imaging. International Society for Optics and Photonics United States, San Diego, August 2-6, 2009 p7258

    [13]

    Zhao S Y, Bae K T, Whiting B, Wang G 2002 J. X-ray Sci. Technol. 10 67

    [14]

    Kratz B, Knopp T, Muller J, Oehler M, Buzug T M 2008 Bildverarbeitung fur die Medizin Germany, Berlin, April 2-6, 2008 p21

    [15]

    Man B D 2001 Ph. D. Dissertation (Leuven:Katholieke University)

    [16]

    Verburg J M, Seco J 2012 Phys. Med. Biol. 57 2803

    [17]

    Zhao S, Robeltson D D, Wang G, Whiting B, Bae K T 2000 IEEE Trans. Med. Imaging. 19 1238

    [18]

    NelderJ A, Mead R 1965 Comput. J. 7 308

    [19]

    Meyer E, Raupach R, Lell M 2012 Med. Phys. 39 1904

    [20]

    Hargreaves B A, Chen W T, Lu W M, Alley M T, Gold G E, Brau A C, Pauly J M, Pauly K B 2010 J. Magn. Reson. Imaging 31 987

  • [1] 罗晓飞, 王波, 彭宽, 肖嘉莹. 基于聚焦声场模型的光声层析成像时间延迟快速校正反投影方法. 物理学报, 2022, 71(7): 078102. doi: 10.7498/aps.71.20212019
    [2] 张芝振, 李亮. X射线荧光CT成像中荧光产额、退激时间、散射、偏振等关键物理问题计算与分析. 物理学报, 2021, 70(19): 195201. doi: 10.7498/aps.70.20210765
    [3] 席晓琦, 韩玉, 李磊, 闫镔. 螺旋锥束计算机断层成像倾斜扇束反投影滤波局部重建算法. 物理学报, 2019, 68(8): 088701. doi: 10.7498/aps.68.20190055
    [4] 窦健泰, 高志山, 马骏, 袁操今, 杨忠明. 基于图像信息熵的ptychography轴向距离误差校正. 物理学报, 2017, 66(16): 164203. doi: 10.7498/aps.66.164203
    [5] 张天天, 易仕和, 朱杨柱, 何霖. 基于背景纹影波前传感技术的气动光学波前重构与校正. 物理学报, 2015, 64(8): 084201. doi: 10.7498/aps.64.084201
    [6] 王林元, 刘宏奎, 李磊, 闫镔, 张瀚铭, 蔡爱龙, 陈建林, 胡国恩. 基于稀疏优化的计算机断层成像图像不完全角度重建综述. 物理学报, 2014, 63(20): 208702. doi: 10.7498/aps.63.208702
    [7] 张强, 户田裕之. 同步辐射K边减影成像及其在多孔金属材料中的应用. 物理学报, 2011, 60(11): 114103. doi: 10.7498/aps.60.114103
    [8] 罗召洋, 杨孝全, 孟远征, 邓勇. Micro CT中混叠伪影的消除. 物理学报, 2010, 59(11): 8237-8243. doi: 10.7498/aps.59.8237
    [9] 代秋声, 漆玉金. 针孔单光子发射计算机断层成像的空间分辨率研究. 物理学报, 2010, 59(2): 1357-1365. doi: 10.7498/aps.59.1357
    [10] 汪 敏, 岑豫皖, 胡小方, 余晓流, 朱佩平. 同步辐射计算机断层技术光源误差机理分析. 物理学报, 2008, 57(10): 6202-6206. doi: 10.7498/aps.57.6202
    [11] 刘大刚, 周 俊, 刘盛纲. 用时域有限差分法实现金属支撑杆的计算机模拟. 物理学报, 2007, 56(12): 6924-6930. doi: 10.7498/aps.56.6924
    [12] 汪 敏, 胡小方. 衍射增强计算机断层技术研究. 物理学报, 2007, 56(8): 4989-4993. doi: 10.7498/aps.56.4989
    [13] 汪 敏, 胡小方, 伍小平. 同步辐射计算机断层技术衬度误差机理分析. 物理学报, 2006, 55(8): 4065-4069. doi: 10.7498/aps.55.4065
    [14] 舒 航, 朱佩平, 王寯越, 高 欣, 伊红霞, 刘 波, 袁清习, 黄万霞, 罗述谦, 高秀来, 吴自玉, 方守贤. 衍射增强成像方法在计算机断层成像中的应用. 物理学报, 2006, 55(3): 1099-1106. doi: 10.7498/aps.55.1099
    [15] 郑小平, 张佩峰, 刘 军, 贺德衍, 马健泰. 薄膜外延生长的计算机模拟. 物理学报, 2004, 53(8): 2687-2693. doi: 10.7498/aps.53.2687
    [16] 谢永军, 石勤伟, 王晓平, 朱平平, 杨海洋, 张兴元. DNA在熵受限管道中穿越过程的计算机模拟. 物理学报, 2004, 53(8): 2796-2800. doi: 10.7498/aps.53.2796
    [17] 王少宏, B.Ferguson, 张存林, 张希成. Terahertz波计算机辅助三维层析成像技术. 物理学报, 2003, 52(1): 120-124. doi: 10.7498/aps.52.120
    [18] 李桌棠, 吴佩芳, 陶永棋, 茅德康. 通过磁化曲线计算金属磁熵变. 物理学报, 1999, 48(13): 126-131. doi: 10.7498/aps.48.126
    [19] 陈宝玖, 秦伟平, 王海宇, 许 武, 黄世华. 能量传递过程的计算机模拟. 物理学报, 1999, 48(3): 545-549. doi: 10.7498/aps.48.545
    [20] C. S. IH, 王永昭, 吴继宗, 相连钦. 计算机产生全息光学元件用于校正椭圆高斯激光束. 物理学报, 1986, 35(2): 220-227. doi: 10.7498/aps.35.220
计量
  • 文章访问数:  6135
  • PDF下载量:  419
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-08
  • 修回日期:  2013-11-13
  • 刊出日期:  2014-03-05

/

返回文章
返回