搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用源强密度声辐射模态重建声场

聂永发 朱海潮

引用本文:
Citation:

利用源强密度声辐射模态重建声场

聂永发, 朱海潮

Acoustic field reconstruction using source strength density acoustic radiation modes

Nie Yong-Fa, Zhu Hai-Chao
PDF
导出引用
  • 为了利用声场中少量测点声压数据精确重建复杂结构的辐射声场,提出了源强密度声辐射模态分析理论和声场重建公式. 在结构表面定义的空间上,利用以源强密度分布函数为参量的结构辐射声功率泛函表达式定义了一个线性自伴正辐射算子,该算子的特征函数为结构的源强密度声辐射模态. 然后通过对矩形平板和带有半球帽的圆柱体的源强密度声辐射模态的分析,证明了源强密度声辐射模态具有空间滤波特性,并利用该性质建立了声场重建公式. 球体仿真和平板实验验证了所提出的声场重建方法的可行性和稳健性. 基于源强密度声辐射模态的声场重建方法简单,利用较少测点数据就可以获得较高的声场重建精度,特别适合于复杂结构的低频声场重建.
    To use a small number of acoustic pressure measurement data to reconstruct the radiated acoustic field of the complicated structure, a theory of source strength density acoustic radiation modes is proposed and a formula of acoustic field reconstruction is developed. In the space defined on the surface of the structure, functional form of the acoustic radiation power expression in which parameter is source strength density is constructed. In terms of the functional a linear self-adjoint and positive radiation operator is defined whose eigenfunctions are source strength density acoustic radiation modes. And then it is proved that source strength density acoustic radiation modes possess space filter characteristic through analyzing the source strength density radiation modes of rectangular plate and cylinder with hemisphere ends. The formula of acoustic field reconstruction with the space filter nature is obtained. The sphere simulations and plate experiment validate the feasibility and robustness of the proposed acoustic field reconstruction method. The acoustic field reconstruction method based on the proposed radiation modes is simple, has high accuracy that can be obtained by using only a few measurement data, so this method is especially applicable for low frequency acoustic field reconstruction of the complicated structure.
    • 基金项目: 国家自然科学基金(批准号:51305452)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51305452).
    [1]

    He Z Y, He Y A, Shang D J 2000 Chin. J. Acoust. 19 193

    [2]

    Bi C X, Zhang Y B, Xu L, Chen X Z 2010 Acta Phys. Sin. 59 1108 (in Chinese)[毕传兴, 张永斌, 徐亮, 陈心昭 2010 物理学报 59 1108]

    [3]

    Xu L, Bi C X, Chen J, Chen X Z 2007 Acta Phys. Sin. 56 2776 (in Chinese)[徐亮, 毕传兴, 陈剑, 陈心昭 2007 物理学报 56 2776]

    [4]

    Wang Z X, Wu S F 1997 J. Acoust. Soc. Am. 102 2020

    [5]

    Zhang H B, Wan Q, Jiang W K 2009 Acta Phys. Sin. 58 333 (in Chinese)[张海滨, 万泉, 蒋伟康 2009 物理学报 58 333]

    [6]

    Bai M R, Lee J 1998 J. Vib. Acoust. 120 426

    [7]

    Tang Y Z, Wu Z J, Tang L G 2010 Chin. Phy. B 19 054303

    [8]

    Dumbacher S, Blough J, Hallman D, Wang P 1995 Proceedings of the SAE Noise and Vibration Conference Traverse City, USA, May 15-18, 1995 p1023

    [9]

    Elliott S J, Johnson M E 1993 J. Acoust. Soc. Am. 94 2194

    [10]

    Berkhoff A P 2000 J. Acoust. Soc. Am. 108 1037

    [11]

    Yamaguchi Z, Bolton J S, Sakagami K 2011 Appl. Acoust. 72 420

    [12]

    Chanpheng T, Yamada H, Miyata T, Katsuchi H 2004 Appl. Acoust. 65 109

    [13]

    Sarkissian A 1992 J. Acoust. Soc. Am. 92 825

    [14]

    Naghshineh K, Koopmann G H, Belegundu A D 1992 J. Acoust. Soc. Am. 92 841

    [15]

    Jiang Z 2004 Acta Acust. 29 373 (in Chinese) [姜哲 2004 声学学报 29 373]

    [16]

    Williams E G 2001 Sound Radiation and Nearfield Acoustical Holograph (London: Academic Press) p267

    [17]

    Song L M, Koopmann G H, Fahnline J B 1991 J. Acoust. Soc. Am. 89 2786

  • [1]

    He Z Y, He Y A, Shang D J 2000 Chin. J. Acoust. 19 193

    [2]

    Bi C X, Zhang Y B, Xu L, Chen X Z 2010 Acta Phys. Sin. 59 1108 (in Chinese)[毕传兴, 张永斌, 徐亮, 陈心昭 2010 物理学报 59 1108]

    [3]

    Xu L, Bi C X, Chen J, Chen X Z 2007 Acta Phys. Sin. 56 2776 (in Chinese)[徐亮, 毕传兴, 陈剑, 陈心昭 2007 物理学报 56 2776]

    [4]

    Wang Z X, Wu S F 1997 J. Acoust. Soc. Am. 102 2020

    [5]

    Zhang H B, Wan Q, Jiang W K 2009 Acta Phys. Sin. 58 333 (in Chinese)[张海滨, 万泉, 蒋伟康 2009 物理学报 58 333]

    [6]

    Bai M R, Lee J 1998 J. Vib. Acoust. 120 426

    [7]

    Tang Y Z, Wu Z J, Tang L G 2010 Chin. Phy. B 19 054303

    [8]

    Dumbacher S, Blough J, Hallman D, Wang P 1995 Proceedings of the SAE Noise and Vibration Conference Traverse City, USA, May 15-18, 1995 p1023

    [9]

    Elliott S J, Johnson M E 1993 J. Acoust. Soc. Am. 94 2194

    [10]

    Berkhoff A P 2000 J. Acoust. Soc. Am. 108 1037

    [11]

    Yamaguchi Z, Bolton J S, Sakagami K 2011 Appl. Acoust. 72 420

    [12]

    Chanpheng T, Yamada H, Miyata T, Katsuchi H 2004 Appl. Acoust. 65 109

    [13]

    Sarkissian A 1992 J. Acoust. Soc. Am. 92 825

    [14]

    Naghshineh K, Koopmann G H, Belegundu A D 1992 J. Acoust. Soc. Am. 92 841

    [15]

    Jiang Z 2004 Acta Acust. 29 373 (in Chinese) [姜哲 2004 声学学报 29 373]

    [16]

    Williams E G 2001 Sound Radiation and Nearfield Acoustical Holograph (London: Academic Press) p267

    [17]

    Song L M, Koopmann G H, Fahnline J B 1991 J. Acoust. Soc. Am. 89 2786

  • [1] 韦宜政, 孙超, 朱启轩. 浅海矢量声场极化特性的深度分布规律. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231767
    [2] 汪磊, 黄益旺, 郭霖, 任超. 浅海粗糙海底声散射建模及声场特性. 物理学报, 2024, 73(3): 034301. doi: 10.7498/aps.73.20231472
    [3] 何兆阳, 雷波, 杨益新. 源致内波引起的声场扰动及其检测方法. 物理学报, 2023, 72(14): 144301. doi: 10.7498/aps.72.20230346
    [4] 潘瑞琪, 李凡, 杜芷玮, 胡静, 莫润阳, 王成会. 平面波声场中内置偏心液滴的弹性球壳声辐射力. 物理学报, 2023, 72(5): 054302. doi: 10.7498/aps.72.20222155
    [5] 李永飞, 郭瑞明, 赵航芳. 浅海内波环境下声场干涉条纹的稀疏重建. 物理学报, 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932
    [6] 牛晓东, 卢莉蓉, 王鉴, 韩星程, 郭树言, 王黎明. 基于改进经验模态分解域内心动物理特征识别模式分量的心电信号重建. 物理学报, 2021, 70(3): 038702. doi: 10.7498/aps.70.20201122
    [7] 谢实梦, 黄林, 王雪, 迟子惠, 汤永辉, 郑铸, 蒋华北. 基于镂空阵列探头的反射式光声/热声双模态组织成像. 物理学报, 2021, 70(10): 100701. doi: 10.7498/aps.70.20202012
    [8] 时胜国, 高塬, 张昊阳, 杨博全. 基于单元辐射叠加法的结构声源声场重建方法. 物理学报, 2021, 70(13): 134301. doi: 10.7498/aps.70.20201971
    [9] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [10] 杨德森, 张睿, 时胜国. 内部体积源作用下的圆柱壳内外声场特性. 物理学报, 2018, 67(24): 244301. doi: 10.7498/aps.67.20181716
    [11] 林旺生, 梁国龙, 王燕, 付进, 张光普. 运动目标辐射声场干涉结构映射域特征研究. 物理学报, 2014, 63(3): 034306. doi: 10.7498/aps.63.034306
    [12] 毕传兴, 胡定玉, 张永斌, 徐亮. 基于等效源法和双面质点振速测量的声场分离方法. 物理学报, 2013, 62(8): 084301. doi: 10.7498/aps.62.084301
    [13] 张海滨, 万泉, 蒋伟康. HELS法在循环平稳声场全息重建中的理论与实验研究. 物理学报, 2009, 58(1): 333-340. doi: 10.7498/aps.58.333
    [14] 汤立国, 许肖梅, 刘胜兴. 海底爆破辐射声场的理论及数值研究. 物理学报, 2008, 57(7): 4251-4257. doi: 10.7498/aps.57.4251
    [15] 于 飞, 陈 剑, 李卫兵, 陈心昭. 声场分离技术及其在近场声全息中的应用. 物理学报, 2005, 54(2): 789-797. doi: 10.7498/aps.54.789
    [16] 于 飞, 陈心昭, 李卫兵, 陈 剑. 空间声场全息重建的波叠加方法研究. 物理学报, 2004, 53(8): 2607-2613. doi: 10.7498/aps.53.2607
    [17] 毕传兴, 陈心昭, 陈 剑. 半自由声场的全息重建和预测实验研究. 物理学报, 2004, 53(12): 4268-4276. doi: 10.7498/aps.53.4268
    [18] 王佐卿. 声表面波在线性调频声栅上作Bragg衍射后的聚焦声场. 物理学报, 1988, 37(3): 388-395. doi: 10.7498/aps.37.388
    [19] 张仁和, 朱柏贤. 指向性辐射器的简正波声场. 物理学报, 1983, 32(4): 490-496. doi: 10.7498/aps.32.490
    [20] 张仁和. 平面辐射器的声场. 物理学报, 1964, 20(3): 227-232. doi: 10.7498/aps.20.227
计量
  • 文章访问数:  5072
  • PDF下载量:  498
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-18
  • 修回日期:  2014-01-15
  • 刊出日期:  2014-05-05

/

返回文章
返回