搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于NPLS的超声速后台阶流场精细结构及其非定常特性

朱杨柱 易仕和 孔小平 全鹏程 陈植 田立丰

引用本文:
Citation:

基于NPLS的超声速后台阶流场精细结构及其非定常特性

朱杨柱, 易仕和, 孔小平, 全鹏程, 陈植, 田立丰

Fine structures and the unsteadiness characteristics of supersonic flow over backward facing step via NPLS

Zhu Yang-Zhu, Yi Shi-He, Kong Xiao-Ping, Quan Peng-Cheng, Chen Zhi, Tian Li-Feng
PDF
导出引用
  • 在马赫数3.4的低噪声超声速风洞中,分别采用纹影技术及基于纳米示踪的平面激光散射技术(NPLS),对台阶高度为3 mm的层流后台阶绕流结构进行了流动显示实验,旨在研究后台阶流场再附区的平均流动规律及再附边界层的瞬态流场精细结构,并通过比较不同时刻的NPLS数据,发现后台阶再附边界层涡结构的非定常演化特性;并且与马赫数4.2条件下的纹影结果和前期研究成果进行了比较. 结果表明,两种流动显示方法均可以捕捉激波膨胀波的位置,但NPLS技术在揭示流场某一截面内的瞬态精细结构方面更具优势,其时间分辨率可达6 ns,空间分辨率微米量级;该流场条件下的回流剪切层的倾角为-3.1°,再附边界层的平均增长斜率为0.07519;再附边界层中发卡涡脱落的特征时间尺度为大约10 μs. 相同膨胀比条件下,再附随着马赫数增大而推迟;膨胀比越大,再附越提前,并且流动折转角变大.
    In a low-noise supersonic wind tunnel at a Mach number 3.4, visualization of flow structure around backward facing step (BFS) with a 3 mm high step is carried out via schlieren and nano-tracer-based planar laser scattering (NPLS) respectively. The time-averaged flow characteristic of the reattachment region and the rich instantaneous structures of the redeveloping boundary layer are both revealed. By contrasting the NPLS images at different times, the unsteady evolvement characteristic of the coherent vortices in the redeveloping boundary layer is discussed. And the results are compared with the schlieren of Mach 4.2 and the prior data published. Results indicate that with either of the two flow visualization ways, the shock waves and the expansion waves can be captured; however, the NPLS technique has the obvious advantages to reveal the instantaneous structures on a small scale in a certain section plane with a time resolution of 6 ns and spatial resolution about micron magnitude; under the flow condition in this contribution, the growth rate of redeveloping boundary layer is 0.07519; the characteristic time is around 10 μs of the hairpin vortex shedding. At the same expansion rate, the reattachment occurs later with increasing Mach numbers, while if the expansion rate increases, the reattachment occurs earlier, and the flow turn angle is larger.
    • 基金项目: 国家自然科学基金(批准号:11172326,11302256)、湖南省研究生科研创新项目(批准号:CX2013B002)和国防科技大学优秀研究生创新项目(批准号:B130103)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11172326, 11302256), Hunan Provincial Innovation Foundation For Postgraduate, China (Grant No. CX2013B002), and the Innovation Fund for Standout Graduate Students of NUDT, China (Grant No. B130103).
    [1]

    Troutt T R, Scheelke B, Morman T R 1984 J. Fluid Mech. 143 413

    [2]

    Jagannath R 2011 Ph. D. Dissertation (Toronto: University of Toronto)

    [3]

    Abdallah S 1966 AD Report 647 958

    [4]

    Eaton J K, Johnston J P 1980 AIAA Paper, 80-1438

    [5]

    Nicole R M, Rodney D W B 2012 AIAA Paper 2012-2709

    [6]

    Biswas G, Breuer M, Durst F 2004 Transactions of ASME 126 362

    [7]

    Chen Z, Yi S H, Tian L F, He L, Zhu Y Z 2013 Shock Waves 23 299

    [8]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. Chin. Ser. E 52 3640

    [9]

    Zhao Y X, Yi S H, He L, Tian L F, Cheng Z Y 2007 Chin. Sci. Bull. 52 1297

    [10]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2008 Sci. Chin. Ser. G 51 1134

    [11]

    Zhu Yang-Zhu, Yi Shi-He, He Lin, Tian Li-Feng, Zhou Yong-Wei 2013 Chin. Phys. B 22 014702

    [12]

    Zhang Qing-Hu, Yi Shi-He, Zhu Yang-Zhu, Chen Zhi, Wu Yu 2013 Chin. Phys. Lett. 30 044701

    [13]

    He Lin, Yi Shi-he, Tian Li-Feng, Chen Zhi, Zhu Yang-Zhu 2013 Chin. Phys. B 22 024704

    [14]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. Chin. Ser. G 52 2001

    [15]

    Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y 2009 Sci. Chin. Ser. G 52 1357

    [16]

    Eaton J K, Johnston J P 1982 Turbulent Shear Flows 3 162

    [17]

    Nedjib D 1987 Ph. D Dissertation (Vancouver, University of British Columbia)

  • [1]

    Troutt T R, Scheelke B, Morman T R 1984 J. Fluid Mech. 143 413

    [2]

    Jagannath R 2011 Ph. D. Dissertation (Toronto: University of Toronto)

    [3]

    Abdallah S 1966 AD Report 647 958

    [4]

    Eaton J K, Johnston J P 1980 AIAA Paper, 80-1438

    [5]

    Nicole R M, Rodney D W B 2012 AIAA Paper 2012-2709

    [6]

    Biswas G, Breuer M, Durst F 2004 Transactions of ASME 126 362

    [7]

    Chen Z, Yi S H, Tian L F, He L, Zhu Y Z 2013 Shock Waves 23 299

    [8]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. Chin. Ser. E 52 3640

    [9]

    Zhao Y X, Yi S H, He L, Tian L F, Cheng Z Y 2007 Chin. Sci. Bull. 52 1297

    [10]

    Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y 2008 Sci. Chin. Ser. G 51 1134

    [11]

    Zhu Yang-Zhu, Yi Shi-He, He Lin, Tian Li-Feng, Zhou Yong-Wei 2013 Chin. Phys. B 22 014702

    [12]

    Zhang Qing-Hu, Yi Shi-He, Zhu Yang-Zhu, Chen Zhi, Wu Yu 2013 Chin. Phys. Lett. 30 044701

    [13]

    He Lin, Yi Shi-he, Tian Li-Feng, Chen Zhi, Zhu Yang-Zhu 2013 Chin. Phys. B 22 024704

    [14]

    Yi S H, He L, Zhao Y X, Tian L F, Cheng Z Y 2009 Sci. Chin. Ser. G 52 2001

    [15]

    Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y 2009 Sci. Chin. Ser. G 52 1357

    [16]

    Eaton J K, Johnston J P 1982 Turbulent Shear Flows 3 162

    [17]

    Nedjib D 1987 Ph. D Dissertation (Vancouver, University of British Columbia)

计量
  • 文章访问数:  4502
  • PDF下载量:  734
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-08
  • 修回日期:  2014-02-25
  • 刊出日期:  2014-07-05

/

返回文章
返回