搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔ZnO微米球的制备及其优异的丙酮敏感特性

薄小庆 刘唱白 李海英 刘丽 郭欣 刘震 刘丽丽 苏畅

引用本文:
Citation:

多孔ZnO微米球的制备及其优异的丙酮敏感特性

薄小庆, 刘唱白, 李海英, 刘丽, 郭欣, 刘震, 刘丽丽, 苏畅

Synthesis of porous micro-sphere ZnO and its excellent sensing properties to acetone

Bo Xiao-Qing, Liu Chang-Bai, Li Hai-Ying, Liu Li, Guo Xin, Liu Zhen, Liu Li-Li, Su Chang
PDF
导出引用
  • 以六水合硝酸锌、尿素为原料,以六亚甲基四胺为表面活性剂,利用水热法合成了多孔氧化锌微米球. 通过X射线衍射仪、扫描电子显微镜和吸附仪对样品的结构、形貌、比表面积和孔径进行了表征. 利用所得多孔微米球氧化锌制备了气敏元件,并对其气敏特性进行了测试. 结果表明:在280℃的工作温度下,表面多孔氧化锌微米球气敏元件对50 ppm的丙酮气体的灵敏度为26.8,响应时间和恢复时间分别约为4 s和10 s,并具有良好的选择性.
    Porous micro-spheres of ZnO have been synthesized with Zn(NO3)26H2 O and urea as the raw materials and hexamine as a surfactant via a hydrothermal method. Structure, morphology, specific surface area, and pore size distribution of ZnO porous micro-sphere are characterized by X-ray diffraction, scanning electron microscopy, and micromeritics ASAP 2420 apparatus, respectively. Gas sensors are fabricated from the ZnO porous micro-spheres and their gas-sensing properties are measured. The gas sensitivity of sensor samples at different temperatures to acetone gas is examined. Results show that the sensitivity of ZnO porous micro-spheres sensors to 50 ppm acetone gas is 26.8 at 280 ℃, and the response and recovery durations are 4-10 seconds, respectively. Also, the sensor possesses an excelent selectivity for acetone.
    • 基金项目: 吉林省科技厅重点科技攻关项目(批准号:20140204027GX)和挑战杯大学生课外学术科技作品竞赛项目(批准号:450060497053)资助的课题.
    • Funds: Project supported by the Jilin Provincial Science and Technology Department, China (Grant NO. 20140204027GX), and the Challenge Cup College Students' Extracurricular Academic Science and Technology Works, China (Grant No. 450060497053).
    [1]

    Wang C, Wang F F, Fu X Q, Zhang E D, Xu Z 2011 Chin. Phys. B 20 050701

    [2]

    Xu S, Yang Y, Wu H Y, Jiang C, Jing L Q, Shi K Y 2013 Journal of Inorganic Materials 28 584 (in Chinese)[徐爽, 杨颖, 邬洪源, 江超, 井立强, 史克英 2013 无机材料学报 28 584]

    [3]
    [4]

    Wang X B, Cai W P, Liu S W, Wang G Z, Wu Z K, Zhao H J 2013 Colloids and Surfaces A: Physicochem. Eng. Aspects 422 199

    [5]
    [6]
    [7]

    Zhao X W, Gao X Y, Chen X M, Chen C, Zhao M K 2013 Chin. Phys. B 22 024202

    [8]

    Wei Y L, Huang Y F, Wu J H, Wang M, Guo C S, Dong Q, Yin S, Sato Tsugio 2013 Journal of Hazardous Materials 248249 202

    [9]
    [10]
    [11]

    Chen X M, Wang X X, Gao X Y, Zhao X W, Liu H T, Zhang S 2013 Acta Phys. Sin. 62 056104 (in Chinese)[2013 物理学报 62 056104]

    [12]
    [13]

    Zhang H M, Xu C, Sheng P K, Chen Y J, Yu L, Li Q H 2013 Sensors and Actuators B 181 99

    [14]

    Lv Y Z, Wang L F, Liao X X, Guo L, Li C R 2011 Journal of the Chinese Ceramic Society 39 1145

    [15]
    [16]
    [17]

    Ibupoto Z H, Jamal N, Khun K, Liu X, Willander M 2013 Sensors and Actuators B 182 104

    [18]

    Zeng Y, Lou Z, Wang L L, Zou B, Zhang T, Zheng W T, Zou G T 2011 Sensors and Actuators B 156 395

    [19]
    [20]

    Wang H T, Wu T 2011 J. Mater. Chem. 21 15095

    [21]
    [22]
    [23]

    Sun Y, N George Ndifor-Angwafor, D Jason Riley, Michael N R Ashfold 2006 Chemical Physics Letters 431 352

    [24]
    [25]

    Yu X, Song F, Zhai B, Zheng C T, Wang Y D 2013 Physica E 52 92

    [26]
    [27]

    Li X B, Ma S Y, Li F M, Chen Y, Zhang Q Q, Yang X H, Wang C Y 2013 J. Materials Letters 100 119

    [28]

    You L M, Huo L H, Cheng X L, Zhao H, Gao S 2013 Electronic Components and Materials 32 13 (in Chinese)[由丽梅, 霍丽华, 程晓丽, 赵辉, 高山 2013 电子元件与材料 32 13]

    [29]
    [30]
    [31]

    Lim S K, Hwang S H, Chang D, Kim S 2010 Sensors and Actuators B 149 28

    [32]
    [33]

    Zhang T, Qi Q, Liu K X, Liu L, Zhang L, Xu B K 2006 Trans. Nonferrous Met. Soc. China 16 780

    [34]
    [35]

    Navale S T, Bandgar D K, Nalage S R, Khuspe G D, Chougule M A, Kolekar Y D, Sen S, Patil V B 2013 Ceramics International 39 6453

    [36]
    [37]

    Chi X, Liu C B, Liu L, Li Y, Wang Z J, Bo X Q, Liu L L, Su C 2014 Sensors and Actuators B 194 33

    [38]
    [39]

    Song P, Wang Q, Yang Z X 2012 Materials Letters 86 168

    [40]
    [41]

    Wang D W, Du S S, Zhou X, Wang B, Ma J, Sun P, Sun Y F, Lu G Y 2013 Cryst. Eng. Comm. 15 7438

  • [1]

    Wang C, Wang F F, Fu X Q, Zhang E D, Xu Z 2011 Chin. Phys. B 20 050701

    [2]

    Xu S, Yang Y, Wu H Y, Jiang C, Jing L Q, Shi K Y 2013 Journal of Inorganic Materials 28 584 (in Chinese)[徐爽, 杨颖, 邬洪源, 江超, 井立强, 史克英 2013 无机材料学报 28 584]

    [3]
    [4]

    Wang X B, Cai W P, Liu S W, Wang G Z, Wu Z K, Zhao H J 2013 Colloids and Surfaces A: Physicochem. Eng. Aspects 422 199

    [5]
    [6]
    [7]

    Zhao X W, Gao X Y, Chen X M, Chen C, Zhao M K 2013 Chin. Phys. B 22 024202

    [8]

    Wei Y L, Huang Y F, Wu J H, Wang M, Guo C S, Dong Q, Yin S, Sato Tsugio 2013 Journal of Hazardous Materials 248249 202

    [9]
    [10]
    [11]

    Chen X M, Wang X X, Gao X Y, Zhao X W, Liu H T, Zhang S 2013 Acta Phys. Sin. 62 056104 (in Chinese)[2013 物理学报 62 056104]

    [12]
    [13]

    Zhang H M, Xu C, Sheng P K, Chen Y J, Yu L, Li Q H 2013 Sensors and Actuators B 181 99

    [14]

    Lv Y Z, Wang L F, Liao X X, Guo L, Li C R 2011 Journal of the Chinese Ceramic Society 39 1145

    [15]
    [16]
    [17]

    Ibupoto Z H, Jamal N, Khun K, Liu X, Willander M 2013 Sensors and Actuators B 182 104

    [18]

    Zeng Y, Lou Z, Wang L L, Zou B, Zhang T, Zheng W T, Zou G T 2011 Sensors and Actuators B 156 395

    [19]
    [20]

    Wang H T, Wu T 2011 J. Mater. Chem. 21 15095

    [21]
    [22]
    [23]

    Sun Y, N George Ndifor-Angwafor, D Jason Riley, Michael N R Ashfold 2006 Chemical Physics Letters 431 352

    [24]
    [25]

    Yu X, Song F, Zhai B, Zheng C T, Wang Y D 2013 Physica E 52 92

    [26]
    [27]

    Li X B, Ma S Y, Li F M, Chen Y, Zhang Q Q, Yang X H, Wang C Y 2013 J. Materials Letters 100 119

    [28]

    You L M, Huo L H, Cheng X L, Zhao H, Gao S 2013 Electronic Components and Materials 32 13 (in Chinese)[由丽梅, 霍丽华, 程晓丽, 赵辉, 高山 2013 电子元件与材料 32 13]

    [29]
    [30]
    [31]

    Lim S K, Hwang S H, Chang D, Kim S 2010 Sensors and Actuators B 149 28

    [32]
    [33]

    Zhang T, Qi Q, Liu K X, Liu L, Zhang L, Xu B K 2006 Trans. Nonferrous Met. Soc. China 16 780

    [34]
    [35]

    Navale S T, Bandgar D K, Nalage S R, Khuspe G D, Chougule M A, Kolekar Y D, Sen S, Patil V B 2013 Ceramics International 39 6453

    [36]
    [37]

    Chi X, Liu C B, Liu L, Li Y, Wang Z J, Bo X Q, Liu L L, Su C 2014 Sensors and Actuators B 194 33

    [38]
    [39]

    Song P, Wang Q, Yang Z X 2012 Materials Letters 86 168

    [40]
    [41]

    Wang D W, Du S S, Zhou X, Wang B, Ma J, Sun P, Sun Y F, Lu G Y 2013 Cryst. Eng. Comm. 15 7438

  • [1] 董逸蒙, 孙永娇, 侯煜晨, 王炳亮, 陆志远, 张文栋, 胡杰. SnO2/ZnS异质结气体传感器的制备及其室温NO2敏感特性. 物理学报, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [2] 张如轩, 宗肖航, 于婷婷, 葛一璇, 胡适, 梁文杰. 基于纳米传感器矩阵的混合气体组分探测与识别. 物理学报, 2022, 71(18): 180702. doi: 10.7498/aps.71.20220955
    [3] 孙永娇, 王世贞, 张文磊, 王文达, 张文栋, 胡杰. MOF衍生锌钴复合微结构的制备及环己酮气敏性能研究. 物理学报, 2022, 71(10): 100701. doi: 10.7498/aps.71.20212114
    [4] 徐强, 段康, 谢浩, 张秦蓉, 梁本权, 彭祯凯, 李卫. 基于第一性原理的二维材料黑磷砷气体传感器的机理研究. 物理学报, 2021, 70(15): 157101. doi: 10.7498/aps.70.20201952
    [5] 艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬. 二维材料WTe2用于气体传感器的性能研究. 物理学报, 2019, 68(19): 197101. doi: 10.7498/aps.68.20190642
    [6] 孙小亮, 陈长虹, 孟德佳, 冯士高, 于洪浩. 复合金属光栅模式分离与高性能气体传感器应用. 物理学报, 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [7] 王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖. 高绒度掺硼氧化锌透明导电薄膜用作非晶硅太阳电池前电极的研究. 物理学报, 2014, 63(2): 028801. doi: 10.7498/aps.63.028801
    [8] 朱顺明, 顾然, 黄时敏, 姚峥嵘, 张阳, 陈斌, 毛昊源, 顾书林, 叶建东, 郑有炓. 金属有机源化学气相沉积法生长氧化锌薄膜中氢气的作用及其机理. 物理学报, 2014, 63(11): 118103. doi: 10.7498/aps.63.118103
    [9] 任艳东, 郝淑娟, 邱忠阳. 表面等离子体增强氧化锌纳米带发光特性的研究. 物理学报, 2013, 62(14): 147302. doi: 10.7498/aps.62.147302
    [10] 陈先梅, 郜小勇, 张飒, 刘红涛. 醋酸锌热解温度对ZnO纳米棒的结构及光学性质的影响. 物理学报, 2013, 62(4): 049102. doi: 10.7498/aps.62.049102
    [11] 陈先梅, 王晓霞, 郜小勇, 赵显伟, 刘红涛, 张飒. 掺银氧化锌纳米棒的水热法制备研究. 物理学报, 2013, 62(5): 056104. doi: 10.7498/aps.62.056104
    [12] 刘佳, 徐玲玲, 张海霖, 吕威, 朱琳, 高红, 张喜田. 一步水热法在Al掺杂ZnO纳米盘上可控自组装合成ZnO纳米棒阵列. 物理学报, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [13] 秦玉香, 王飞, 沈万江, 胡明. 氧化钨纳米线-单壁碳纳米管复合型气敏元件的室温NO2敏感性能与机理. 物理学报, 2012, 61(5): 057301. doi: 10.7498/aps.61.057301
    [14] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [15] 尹桂来, 李建英, 李盛涛. 利用普适介电理论对银/氧化锌复合材料介电性能的研究. 物理学报, 2009, 58(6): 4219-4224. doi: 10.7498/aps.58.4219
    [16] 肖 竞, 柏 鑫, 张耿民. 整齐排列的氧化锌纳米针阵列的场发射性能. 物理学报, 2008, 57(11): 7057-7062. doi: 10.7498/aps.57.7057
    [17] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管. 物理学报, 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [18] 倪赛力, 常永勤, 龙 毅, 叶荣昌. 氧化锌纳米棒场发射性能研究. 物理学报, 2006, 55(10): 5409-5412. doi: 10.7498/aps.55.5409
    [19] 姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤. 丙酮分子的共振增强多光子电离解离过程的实验研究. 物理学报, 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [20] 肖 雪, 李海洋, 罗晓琳, 牛冬梅, 温丽华, 王 宾, 梁 峰, 侯可勇, 董 璨, 邵士勇. 纳秒强激光中丙酮团簇增强的多价电离现象. 物理学报, 2006, 55(2): 661-666. doi: 10.7498/aps.55.661
计量
  • 文章访问数:  4583
  • PDF下载量:  792
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-25
  • 修回日期:  2014-05-20
  • 刊出日期:  2014-09-05

/

返回文章
返回