搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单轴应变SiNMOSFET热载流子栅电流模型

吕懿 张鹤鸣 胡辉勇 杨晋勇

引用本文:
Citation:

单轴应变SiNMOSFET热载流子栅电流模型

吕懿, 张鹤鸣, 胡辉勇, 杨晋勇

A model of hot carrier gate current for uniaxially strained Si NMOSFET

Lü Yi, Zhang He-Ming, Hu Hui-Yong, Yang Jin-Yong
PDF
导出引用
  • 热载流子效应产生的栅电流是影响器件功耗及可靠性的重要因素之一,本文基于热载流子形成的物理过程,建立了单轴应变硅NMOSFET热载流子栅电流模型,并对热载流子栅电流与应力强度、沟道掺杂浓度、栅源电压、漏源电压等的关系,以及TDDB(经时击穿)寿命与栅源电压的关系进行了分析研究. 结果表明,与体硅器件相比,单轴应变硅MOS器件不仅具有较小的热载流子栅电流,而且可靠性也获得提高. 同时模型仿真结果与单轴应变硅NMOSFET的实验结果符合较好,验证了该模型的可行性.
    Hot carrier gate current is one of the factors that influence the power and reliability of metal-oxide-semiconductor field effect transistor (MOSFET). Based on the physical process of generation of the hot carrier effect, a model of hot carrier gate current for uniaxially strained Si NMOSFET is developed. With that model, the simulation results of hot carrier gate current against stress intensity, gate-source bias, channel doping concentration, and drain-source bias are obtained and analyzed. The relationship between life time of time-dependent dielectric break down (TDDB) and gate-source bias is simulated and analyzed. Results show that the uniaxially strained Si MOSFET not only has smaller hot carrier gate current, but also has more stable reliability as compared with the strainless bulk device. Meanwhile, the simulation results match the experimental results very well, which validates the accuracy of the model.
    • 基金项目: 教育部博士点基金(批准号:JY0300122503)和中央高校基本业务费(批准号:K5051225014,K5051225004)资助的课题.
    • Funds: Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. JY0300122503), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. K5051225014, K5051225004).
    [1]

    Zhou C Y, Zhang H M, Hu H Y, Zhuang Y Q, L Y, Wang B, Li H C 2013 Acta Phys. Sin. 62 237103(in Chinese) [周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 李妤晨 2013 物理学报 62 237103]

    [2]

    Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin. Phys. 16 3827

    [3]

    Nicoleta W, Harald R, Mahadi-ul H 2011 Solid-State Electronics 57 60

    [4]

    Olayiwola A, Sarah O, Anthony O’Neill 2010 Solid-State Electronics 54 634

    [5]

    Zhou C Y, Zhang H M, Hu H Y, Zhuang Y Q, Lv Y, Wang B, Wang G Y 2014 Acta Phys. Sin. 63 017101(in Chinese) [周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 王冠宇 2014 物理学报 63 017101]

    [6]

    Kuang Q W, Liu H X, Wang S L, Qin S S, Wang Z L 2011 Chin. Phys. B 20 127101

    [7]

    Wang B, Zhang H M, Hu H Y, Zhang Y M, Shu B, Zhou C Y, Li H C, Lv Y 2013 Acta Phys. Sin. 62 057103(in Chinese) [王斌, 张鹤鸣, 胡辉勇, 张玉明, 舒斌, 周春宇, 李妤晨, 吕懿 2013 物理学报 62 057103]

    [8]

    Ting-Kuo Kang 2012 IEEE Electron Device Letters 33 770

    [9]

    Wu H Y, Zhang H M, Song J J, Hu H Y 2011 Acta Phys. Sin. 60 097302(in Chinese) [吴华英, 张鹤鸣, 宋建军, 胡辉勇 2011 物理学报 60 097302]

    [10]

    Min B W, Zia O, Celik M, Widenhofer R, Kang L, Song S, Gonzales S, Mendicino M 2001 IEEE IEDM 01 873

    [11]

    Liu H X, Zheng X F, Hao Y 2002 Acta Phys. Sin. 51 0163(in Chinese) [刘红侠, 郑雪峰, 郝跃 2002 物理学报 51 0163]

    [12]

    Tam S, Ko P K, Hu C M 1984 IEEE Trans. on Electron Devices 31 1116

    [13]

    El-Hennawy A, El-Said M H, Borel J, Kamarinos G 1987 Solid-Srate Electron 30 519

    [14]

    Ning T H 1979 IEEE Trans. Electron Devices 26 4

    [15]

    Weavera B D, Jackson E M, Summers G P 2000 J. Appl. Phys. 88 6951

    [16]

    Toshifumi I, Toshinori N, Eiji T Norio H, Tsutomu T, Naoharu S, Shin-ichi T 2008 IEEE Trans. on Electron Devices 55 3159

  • [1]

    Zhou C Y, Zhang H M, Hu H Y, Zhuang Y Q, L Y, Wang B, Li H C 2013 Acta Phys. Sin. 62 237103(in Chinese) [周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 李妤晨 2013 物理学报 62 237103]

    [2]

    Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin. Phys. 16 3827

    [3]

    Nicoleta W, Harald R, Mahadi-ul H 2011 Solid-State Electronics 57 60

    [4]

    Olayiwola A, Sarah O, Anthony O’Neill 2010 Solid-State Electronics 54 634

    [5]

    Zhou C Y, Zhang H M, Hu H Y, Zhuang Y Q, Lv Y, Wang B, Wang G Y 2014 Acta Phys. Sin. 63 017101(in Chinese) [周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 王冠宇 2014 物理学报 63 017101]

    [6]

    Kuang Q W, Liu H X, Wang S L, Qin S S, Wang Z L 2011 Chin. Phys. B 20 127101

    [7]

    Wang B, Zhang H M, Hu H Y, Zhang Y M, Shu B, Zhou C Y, Li H C, Lv Y 2013 Acta Phys. Sin. 62 057103(in Chinese) [王斌, 张鹤鸣, 胡辉勇, 张玉明, 舒斌, 周春宇, 李妤晨, 吕懿 2013 物理学报 62 057103]

    [8]

    Ting-Kuo Kang 2012 IEEE Electron Device Letters 33 770

    [9]

    Wu H Y, Zhang H M, Song J J, Hu H Y 2011 Acta Phys. Sin. 60 097302(in Chinese) [吴华英, 张鹤鸣, 宋建军, 胡辉勇 2011 物理学报 60 097302]

    [10]

    Min B W, Zia O, Celik M, Widenhofer R, Kang L, Song S, Gonzales S, Mendicino M 2001 IEEE IEDM 01 873

    [11]

    Liu H X, Zheng X F, Hao Y 2002 Acta Phys. Sin. 51 0163(in Chinese) [刘红侠, 郑雪峰, 郝跃 2002 物理学报 51 0163]

    [12]

    Tam S, Ko P K, Hu C M 1984 IEEE Trans. on Electron Devices 31 1116

    [13]

    El-Hennawy A, El-Said M H, Borel J, Kamarinos G 1987 Solid-Srate Electron 30 519

    [14]

    Ning T H 1979 IEEE Trans. Electron Devices 26 4

    [15]

    Weavera B D, Jackson E M, Summers G P 2000 J. Appl. Phys. 88 6951

    [16]

    Toshifumi I, Toshinori N, Eiji T Norio H, Tsutomu T, Naoharu S, Shin-ichi T 2008 IEEE Trans. on Electron Devices 55 3159

  • [1] 张彩霞, 马向超, 张建奇. Au(111)薄膜表面等离激元和热载流子输运性质的理论研究. 物理学报, 2022, 71(22): 227801. doi: 10.7498/aps.71.20221166
    [2] 郝敏如, 胡辉勇, 廖晨光, 王斌, 赵小红, 康海燕, 苏汉, 张鹤鸣. 射线总剂量辐照对单轴应变Si纳米n型金属氧化物半导体场效应晶体管栅隧穿电流的影响. 物理学报, 2017, 66(7): 076101. doi: 10.7498/aps.66.076101
    [3] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应. 物理学报, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [4] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇, 殷树娟, 周春宇. 单轴应变硅N沟道金属氧化物半导体场效应晶体管电容特性模型. 物理学报, 2015, 64(6): 067305. doi: 10.7498/aps.64.067305
    [5] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇, 殷树娟, 周春宇. 单轴应变SiNMOSFET源漏电流特性模型. 物理学报, 2015, 64(19): 197301. doi: 10.7498/aps.64.197301
    [6] 辛艳辉, 刘红侠, 王树龙, 范小娇. 堆叠栅介质对称双栅单Halo应变Si金属氧化物半导体场效应管二维模型. 物理学报, 2014, 63(24): 248502. doi: 10.7498/aps.63.248502
    [7] 刘翔宇, 胡辉勇, 张鹤鸣, 宣荣喜, 宋建军, 舒斌, 王斌, 王萌. 具有poly-Si1-xGex栅的应变SiGep型金属氧化物半导体场效应晶体管阈值电压漂移模型研究. 物理学报, 2014, 63(23): 237302. doi: 10.7498/aps.63.237302
    [8] 王斌, 张鹤鸣, 胡辉勇, 张玉明, 宋建军, 周春宇, 李妤晨. 异质多晶SiGe栅应变Si NMOSFET物理模型研究. 物理学报, 2013, 62(21): 218502. doi: 10.7498/aps.62.218502
    [9] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 李妤晨. 应变Si NMOSFET漏电流解析模型. 物理学报, 2013, 62(23): 237103. doi: 10.7498/aps.62.237103
    [10] 靳钊, 乔丽萍, 郭晨, 王江安, 刘策. 单轴应变Si(001)任意晶向电子电导有效质量模型. 物理学报, 2013, 62(5): 058501. doi: 10.7498/aps.62.058501
    [11] 王程, 王冠宇, 张鹤鸣, 宋建军, 杨晨东, 毛逸飞, 李永茂, 胡辉勇, 宣荣喜. 单轴、双轴应变Si拉曼谱应力模型. 物理学报, 2012, 61(4): 047203. doi: 10.7498/aps.61.047203
    [12] 王冠宇, 宋建军, 张鹤鸣, 胡辉勇, 马建立, 王晓艳. 单轴应变Si导带色散关系解析模型. 物理学报, 2012, 61(9): 097103. doi: 10.7498/aps.61.097103
    [13] 游海龙, 蓝建春, 范菊平, 贾新章, 查薇. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应晶体管特性退化研究. 物理学报, 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [14] 吴铁峰, 张鹤鸣, 王冠宇, 胡辉勇. 小尺寸应变Si金属氧化物半导体场效应晶体管栅隧穿电流预测模型. 物理学报, 2011, 60(2): 027305. doi: 10.7498/aps.60.027305
    [15] 吴华英, 张鹤鸣, 宋建军, 胡辉勇. 单轴应变硅nMOSFET栅隧穿电流模型. 物理学报, 2011, 60(9): 097302. doi: 10.7498/aps.60.097302
    [16] 王冠宇, 马建立, 张鹤鸣, 王晓艳, 王斌. [110]/(001)单轴应变Si本征载流子浓度模型. 物理学报, 2011, 60(7): 077105. doi: 10.7498/aps.60.077105
    [17] 宋建军, 张鹤鸣, 胡辉勇, 戴显英, 宣荣喜. 应变Si/(001)S1-xGex本征载流子浓度模型. 物理学报, 2010, 59(3): 2064-2067. doi: 10.7498/aps.59.2064
    [18] 杨延宁, 张志勇, 张富春, 张威虎, 闫军锋, 翟春雪. 纳米金刚石的变温场发射. 物理学报, 2010, 59(4): 2666-2671. doi: 10.7498/aps.59.2666
    [19] 刘宇安, 杜 磊, 包军林. 金属氧化物半导体场效应管热载流子退化的1/fγ噪声相关性研究. 物理学报, 2008, 57(4): 2468-2475. doi: 10.7498/aps.57.2468
    [20] 任红霞, 郝 跃. 新型槽栅PMOSFET热载流子退化机理与抗热载流子效应研究. 物理学报, 2000, 49(9): 1683-1688. doi: 10.7498/aps.49.1683
计量
  • 文章访问数:  4480
  • PDF下载量:  373
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-21
  • 修回日期:  2014-05-29
  • 刊出日期:  2014-10-05

/

返回文章
返回