搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

开孔矩形腔体电磁泄漏特性的解析研究

焦重庆 李月月

引用本文:
Citation:

开孔矩形腔体电磁泄漏特性的解析研究

焦重庆, 李月月

Analytical formulation for electromagnetic leakage from an apertured rectangular cavity

Jiao Chong-Qing, Li Yue-Yue
PDF
导出引用
  • 本文提出了一种用于计算开孔矩形腔体电磁泄漏场的解析理论模型. 该理论模型先基于模式展开法求解封闭腔场,进而依据Bethe小孔耦合理论将泄漏场与封闭腔场用等效偶极子关联. 该模型可以考虑波频率、场源位置、开孔位置及场强观测点位置等因素的影响,计算结果与全波仿真结果一致. 本文计算分析了相关因素对电磁屏蔽效能的影响规律,并给出了物理解释. 结果表明近场屏蔽效能小于远场屏蔽效能,且近场区电场屏蔽效能与磁场屏蔽效能并不相同.
    An analytical formulation has been developed for the electromagnetic leakage from an apertured rectangular cavity excited internally by an electric dipole. The leakage fields are represented by the equivalent electric and magnetic dipoles located at the aperture center with their dipole moments related to the “closed cavity” field within the framework of the Bethe's small aperture coupling theory. The “closed cavity” field is obtained by using the mode-expansion method. In this formulation, the leakage field can be expressed as a function of the frequency, the source point, the field point, and the position of the aperture. The formulation then is employed to analyze the influences of the above factors on the shielding effectiveness and the corresponding physical mechanisms are also illuminated. Comparison with the full wave simulation software CST has verified the formulation over a very broad frequency range. It is shown that the near-field shielding effectiveness is smaller than the far-field one, and the electric shielding effectiveness is different from the magnetic one in the near-field zone.
    • 基金项目: 国家自然科学基金(批准号:51307055)和中央高校基本科研业务费(批准号:2014ZP02)资助的课题资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51307055), and in part by the Fundamental Research Funds for the Central Universities in China (Grant No. 2014ZP02).
    [1]

    Henry W O 2009 Electromagnetic Compatibility Engineering (1st ed) (New York: Wiley Interscience)

    [2]

    Zhou B H 2003 EMP and EMP Protection (1st ed) (Beijing: National Defense Industry Press) (in Chinese) [周璧华2003电磁脉冲及其工程防护(北京: 国防工业出版社)]

    [3]

    He J L 2010 Introduction to Electromagnetic Compatibility (Beijing: Science Press) (in Chinese) [何金良2010电磁兼容概论(北京: 科学出版社)]

    [4]

    Gomory F, Solovyov M, Souc J, Navau C, Prat-Camps J, Sanchez A 2012 Science 335 1466

    [5]

    Ali K M, Dehkhoda P, Mazandaran R M, Hesamedin S H 2010 IEEE Trans. Electromagn. Compat. 52 230

    [6]

    Chen J, Wang J G 2007 IEEE Trans. Electromagn. Compat. 49 354

    [7]

    Dehkhoda P, Tavakoli A, Azadifar M 2012 IEEE Trans. Electromagn. Compat. 54 792

    [8]

    Chen J, Wang J G 2013 IEEE Trans. Electromagn. Compat. 55 1239

    [9]

    Shim J J, Kam D G, Kwon J H, Kim J 2010 IEEE Trans. Electromagn. Compat. 52 566

    [10]

    Jiao C Q, Zhu H Z 2013 Chin. Phys. B 22 084101

    [11]

    Robinson M P, Benson T M, Christopoulos C, Dawson J F, Ganley M D, Marvin A C, Porter S J, Thomas D W P 1998 IEEE Trans. Electromagn. Compat. 40 240

    [12]

    Fan J Q, Hao J H, Qi P H 2014 Acta Phys. Sin. 63 014104 (in Chinese) [范杰清, 郝建红, 柒培华 2014 物理学报 63 014104]

    [13]

    Wang J G, Liu G Z, Zhou J S 2003 High Power Laser and Particle Beams 15 1093 (in Chinese) [王建国, 刘国治, 周金山 2003 强激光与粒子束 15 1093]

    [14]

    Zhou J S, Liu G Z, Peng P, Wang J G 2004 High Power Laser and Particle Beams 16 88 (in Chinese) [周金山, 刘国治, 彭鹏, 王建国 2004 强激光与粒子束 16 88]

    [15]

    Tait G B, Hager C, Slocum M B, Hatfield M O 2013 IEEE Trans. Electromagn. Compat. 55 231

    [16]

    IEEE Std 299-2006, IEEE standard method for measuring the effectiveness of electromagnetic shielding enclosures

    [17]

    GB/T 12190-2006, Method for measuring the shielding effectiveness of electromagnetic shielding enclosures (in Chinese)[GB/T 12190-2006, 电磁屏蔽室屏蔽效能的测量方法]

    [18]

    Li M, Nuebel J, Drewniak J L, DuBroff R E, Hubing T H, VanDoren T P 2000 IEEE Trans. Electromagn. Compat. 42 29

    [19]

    Li M, Drewniak J L, Radu S, Nuebel J, Hubing T H, DuBroff R E, VanDoren T P 2001 IEEE Trans. Electromagn. Compat. 43 295

    [20]

    Jiao C Q, Qi L 2012 Acta Phys. Sin. 61 134104 (in Chinese) [焦重庆, 齐磊 2012 物理学报 61 134104]

    [21]

    Bethe H A 1944 Phys. Rev. 66 163

    [22]

    Nitsch J B, Tkachenko S V, Potthast S 2012 IEEE Trans. Electromagn. Compat. 54 1252

    [23]

    Jiao C Q, Niu S 2013 Acta Phys. Sin. 62 114102 (in Chinese) [焦重庆, 牛帅 2013 物理学报 62 114102]

    [24]

    Rahmat S Y 1975 IEEE Trans. Microw. Theory Techn. 23 762

    [25]

    Robert E Collin 1960 Field Theory of Guided Waves (NewYork: McGraw-Hill) p581

  • [1]

    Henry W O 2009 Electromagnetic Compatibility Engineering (1st ed) (New York: Wiley Interscience)

    [2]

    Zhou B H 2003 EMP and EMP Protection (1st ed) (Beijing: National Defense Industry Press) (in Chinese) [周璧华2003电磁脉冲及其工程防护(北京: 国防工业出版社)]

    [3]

    He J L 2010 Introduction to Electromagnetic Compatibility (Beijing: Science Press) (in Chinese) [何金良2010电磁兼容概论(北京: 科学出版社)]

    [4]

    Gomory F, Solovyov M, Souc J, Navau C, Prat-Camps J, Sanchez A 2012 Science 335 1466

    [5]

    Ali K M, Dehkhoda P, Mazandaran R M, Hesamedin S H 2010 IEEE Trans. Electromagn. Compat. 52 230

    [6]

    Chen J, Wang J G 2007 IEEE Trans. Electromagn. Compat. 49 354

    [7]

    Dehkhoda P, Tavakoli A, Azadifar M 2012 IEEE Trans. Electromagn. Compat. 54 792

    [8]

    Chen J, Wang J G 2013 IEEE Trans. Electromagn. Compat. 55 1239

    [9]

    Shim J J, Kam D G, Kwon J H, Kim J 2010 IEEE Trans. Electromagn. Compat. 52 566

    [10]

    Jiao C Q, Zhu H Z 2013 Chin. Phys. B 22 084101

    [11]

    Robinson M P, Benson T M, Christopoulos C, Dawson J F, Ganley M D, Marvin A C, Porter S J, Thomas D W P 1998 IEEE Trans. Electromagn. Compat. 40 240

    [12]

    Fan J Q, Hao J H, Qi P H 2014 Acta Phys. Sin. 63 014104 (in Chinese) [范杰清, 郝建红, 柒培华 2014 物理学报 63 014104]

    [13]

    Wang J G, Liu G Z, Zhou J S 2003 High Power Laser and Particle Beams 15 1093 (in Chinese) [王建国, 刘国治, 周金山 2003 强激光与粒子束 15 1093]

    [14]

    Zhou J S, Liu G Z, Peng P, Wang J G 2004 High Power Laser and Particle Beams 16 88 (in Chinese) [周金山, 刘国治, 彭鹏, 王建国 2004 强激光与粒子束 16 88]

    [15]

    Tait G B, Hager C, Slocum M B, Hatfield M O 2013 IEEE Trans. Electromagn. Compat. 55 231

    [16]

    IEEE Std 299-2006, IEEE standard method for measuring the effectiveness of electromagnetic shielding enclosures

    [17]

    GB/T 12190-2006, Method for measuring the shielding effectiveness of electromagnetic shielding enclosures (in Chinese)[GB/T 12190-2006, 电磁屏蔽室屏蔽效能的测量方法]

    [18]

    Li M, Nuebel J, Drewniak J L, DuBroff R E, Hubing T H, VanDoren T P 2000 IEEE Trans. Electromagn. Compat. 42 29

    [19]

    Li M, Drewniak J L, Radu S, Nuebel J, Hubing T H, DuBroff R E, VanDoren T P 2001 IEEE Trans. Electromagn. Compat. 43 295

    [20]

    Jiao C Q, Qi L 2012 Acta Phys. Sin. 61 134104 (in Chinese) [焦重庆, 齐磊 2012 物理学报 61 134104]

    [21]

    Bethe H A 1944 Phys. Rev. 66 163

    [22]

    Nitsch J B, Tkachenko S V, Potthast S 2012 IEEE Trans. Electromagn. Compat. 54 1252

    [23]

    Jiao C Q, Niu S 2013 Acta Phys. Sin. 62 114102 (in Chinese) [焦重庆, 牛帅 2013 物理学报 62 114102]

    [24]

    Rahmat S Y 1975 IEEE Trans. Microw. Theory Techn. 23 762

    [25]

    Robert E Collin 1960 Field Theory of Guided Waves (NewYork: McGraw-Hill) p581

  • [1] 张含天, 周前红, 周海京, 孙强, 宋萌萌, 董烨, 杨薇, 姚建生. 稀薄空气中圆柱腔体内系统电磁脉冲的混合模拟. 物理学报, 2022, 71(5): 055201. doi: 10.7498/aps.71.20211524
    [2] 李子杨, 杨霄, 刘华松, 姜玉刚, 白金林, 李士达, 杨仕琪, 苏建忠. 低光学衍射随机六元环金属网络导电膜. 物理学报, 2022, 71(13): 134202. doi: 10.7498/aps.71.20212010
    [3] 张含天, 周前红, 周海京, 孙强, 宋萌萌, 董烨, 杨薇, 姚建生. 稀薄空气中圆柱腔体内系统电磁脉冲的混合模拟研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211524
    [4] 白婉欣, 李天乐, 郭安琪, 成睿琦, 焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究. 物理学报, 2019, 68(10): 104101. doi: 10.7498/aps.68.20182070
    [5] 焦蛟, 童继生, 马春光, 郭佶玙, 薄勇, 赵青. 电磁波在高密度等离子体微柱腔体结构中的新传输模式. 物理学报, 2018, 67(1): 015202. doi: 10.7498/aps.67.20171728
    [6] 郝建红, 公延飞, 范杰清, 蒋璐行. 一种内置条状金属板的双层金属腔体屏蔽效能的理论模型. 物理学报, 2016, 65(4): 044101. doi: 10.7498/aps.65.044101
    [7] 阚勇, 闫丽萍, 赵翔, 周海京, 刘强, 黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法. 物理学报, 2016, 65(3): 030702. doi: 10.7498/aps.65.030702
    [8] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究. 物理学报, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [9] 范杰清, 郝建红, 柒培华. 内部窗口结构对开孔矩形腔体近场屏蔽效能的影响. 物理学报, 2014, 63(1): 014104. doi: 10.7498/aps.63.014104
    [10] 任丹, 杜平安, 聂宝林, 曹钟, 刘文奎. 一种考虑小孔尺寸效应的孔阵等效建模方法. 物理学报, 2014, 63(12): 120701. doi: 10.7498/aps.63.120701
    [11] 牛帅, 焦重庆, 李琳. 中等导电性材料覆盖的金属腔体的电磁屏蔽效能研究. 物理学报, 2013, 62(21): 214102. doi: 10.7498/aps.62.214102
    [12] 焦重庆, 牛帅. 开孔矩形腔体的近场电磁屏蔽效能研究. 物理学报, 2013, 62(11): 114102. doi: 10.7498/aps.62.114102
    [13] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究. 物理学报, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [14] 焦重庆, 齐磊. 平面波照射下开孔矩形腔体的电磁耦合与屏蔽效能研究. 物理学报, 2012, 61(13): 134104. doi: 10.7498/aps.61.134104
    [15] 刘启能. 矩形掺杂光子晶体中电磁波的模式和缺陷模. 物理学报, 2010, 59(4): 2551-2555. doi: 10.7498/aps.59.2551
    [16] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收. 物理学报, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [17] 刘敏敏, 张国平, 邹 明. 二元矩形金属光栅衍射增强电磁理论. 物理学报, 2006, 55(9): 4608-4612. doi: 10.7498/aps.55.4608
    [18] 王 丽, 胡响明. 耦合场线宽:抑制电磁诱导吸收. 物理学报, 2004, 53(8): 2551-2555. doi: 10.7498/aps.53.2551
    [19] 钱景仁. 小孔耦合的能量问题及等效激发场. 物理学报, 1975, 24(1): 61-71. doi: 10.7498/aps.24.61
    [20] 林为干. 矩形波导与圆柱波导或圆柱谐振腔间的小孔耦合. 物理学报, 1959, 15(7): 368-376. doi: 10.7498/aps.15.368
计量
  • 文章访问数:  4184
  • PDF下载量:  526
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-27
  • 修回日期:  2014-05-26
  • 刊出日期:  2014-11-05

/

返回文章
返回