搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆窗片表面次级电子倍增效应的数值模拟

张雪 王勇 范俊杰 张瑞

引用本文:
Citation:

圆窗片表面次级电子倍增效应的数值模拟

张雪, 王勇, 范俊杰, 张瑞

Numerical simulation of multipactor phenomenon on the surface of cylinder window disk

Zhang Xue, Wang Yong, Fan Jun-Jie, Zhang Rui
PDF
导出引用
  • 基于Monte Carlo模拟算法, 建立了粒子输运模型, 通过对盒形窗内圆窗片表面次级电子倍增现象进行数值仿真, 获得了TE11模非均匀分布电场作用下次级电子倍增的规律. 结果表明: 在微波输入端, 指向窗片表面的磁场力起到了维持次级电子与窗片碰撞的作用, 在电场强度较高的区域倍增剧烈, 有质动力对倍增无贡献; 在微波输出端, 受背离窗片表面磁场力的影响, 在表面静电场较弱的情况下, 次级电子倍增不能发生; 当表面静电场足以维持单面倍增的发生, 随着传输功率的增大, 电子渡越时间增长, 有质动力使得倍增强烈的区域由强电场区逐渐转移到弱电场区域. 对利用外静电场抑制微波输入端次级电子倍增效应的方法进行了数值模拟验证.
    A particle model that is based on Monte Carlo particle simulation arithmetic is built up to investigate the multipactor behavior on the surface of cylinder window disk in pill-box window. The regime of multipactor in the inhomogeneous electric field is obtained. The simulation results prove that the interaction between secondary electrons and window disk is sustained by magnetic field force on the upstream side. The multipactor phenomenon acts intensively in the area with a great electric field. The ponderomotive force does not devote any effort to multipactor on the upstream side. On the downstream side, the multipactor cannot be excited without strong enough surface electrostatic field because of the positive magnetic field force. With the increase of transmitting power, secondary electrons can obtain more energies. Due to the effect of ponderomotive force, the multipactor region transfers from the area with powerful electric field to the weak one on the downstream side. Besides, the resistance effect of electrostatic isolation on multipactor is also confirmed in the input port of cylinder waveguide.
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB328901)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB328901).
    [1]

    Semenov V, Rakova E, Zharova N, Anderson D, Lisak M, Puech J 2008 IEEE Trans. Plasma Sci. 32 488

    [2]

    Buyanova M N, Nechaev V E, Semenov V E 2007 Radiophys Quantum Electron 50 893

    [3]

    Pérez A M, Boria V E, Gimeno B, Anza S, Vicetne C, Gil J 2009 J. Electromagnets Wave and Appl. 23 1575

    [4]

    Lobaev M A, Ivanov O A, Isaev V A, Vikharev A L 2009 Tech. Phys. Lett. 35 12

    [5]

    Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D, Zhang J F 2014 Chin. Phys. B 23 048402

    [6]

    Wu L, Ang L K 2007 Phys. Plasmas 14 013105

    [7]

    Rasch J 2012 Ph. D. Dissertation (Sweden, Goteborg: Chalmers University of Technology)

    [8]

    Sazontov A, Semenov V, Buyanova M, Vdovicheva N, Anderson D, Lisak M, Puech J, Lapierre L 2005 Phys. Plasmas 12 093501

    [9]

    Semenov V E, Zharova N A, Anderson D, Lisak M, Puech J 2010 Phys. Plasmas 17 123503

    [10]

    Semenov V E, Rakova E I, Anderson D, Lisak M, Puech J 2007 Phys. Plasmas 14 033501

    [11]

    Semenov V E, Rakova E I, Udijak R, Anderson D, Lisak M, Puech J 2008 Phys. Plasmas 15 033501

    [12]

    Dong Y, Dong Z W, Yang W Y, Zhou Q H, Zhou H J 2013 Acta Phys. Sin. 62 197901 (in Chinese) [董烨, 董志伟, 杨温渊, 周前红, 周海京 2013 物理学报 62 197901]

    [13]

    Vlieks A E, Allen M A, Callin R S, Fowkes W R, Hoyt E W, Lebacqz J V, Lee T G 1989 IEEE Trans. Electr. Insul. 24 1023

    [14]

    Zhu F, Zhang Z C, Dai S, Luo J R 2011 Acta Phys. Sin. 60 084103 (in Chinese) [朱方, 张兆传, 戴舜, 罗继润 2011 物理学报 60 084103]

    [15]

    Yamaguchi S, Saito Y, Anami S, Michizono S 1992 IEEE Trans. Nucl. Sci. 39 278

    [16]

    Saito Y, Michizono S, Anami S, Kobayashi S 1993 IEEE Trans. Electr. Insul. 28 566

    [17]

    Saito Y 1992 Proceedings of the 1992 Linear Accelerator Conference Ottawa, Ontario, Canada, Aug. 24-28, 1992 p575

    [18]

    Miura A, Matsumoto H 1992 Proceedings of the 1992 Linear Accelerator Conference Ottawa, Ontario, Canada, Aug. 24-28, 1992 p124

    [19]

    Matsumoto H 1999 Proceedings of the 1999 Particle Accelerator Conference New York, USA, May 27-Apr. 2, 1999 p536

    [20]

    Vaughan J R M 1988 IEEE Trans. ED. 35 1172

    [21]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193

    [22]

    Hemmert D, Neuber A, Dickens J, Krompholz H, Hatfield L L, Kristiansen M 2000 IEEE Trans. Plasma Sci. 28 472

    [23]

    Sazontov A G, Nevchaev V E 2010 Phys. Plasmas 17 033509

    [24]

    Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [25]

    Michizono S, Saito Y, Suharyanto, Yamano Y, Kobayashi S 2004 Appl. Surf. Sci. 235 227

    [26]

    Foster J, Thomas M, Neuber A A 2009 J. Appl. Phys. 106 063310

    [27]

    Ivanov O A, Lobaev M A, Isaev V A, Vikharev A L 2010 Phys. Rev. ST Accel. Beams 13 022004

  • [1]

    Semenov V, Rakova E, Zharova N, Anderson D, Lisak M, Puech J 2008 IEEE Trans. Plasma Sci. 32 488

    [2]

    Buyanova M N, Nechaev V E, Semenov V E 2007 Radiophys Quantum Electron 50 893

    [3]

    Pérez A M, Boria V E, Gimeno B, Anza S, Vicetne C, Gil J 2009 J. Electromagnets Wave and Appl. 23 1575

    [4]

    Lobaev M A, Ivanov O A, Isaev V A, Vikharev A L 2009 Tech. Phys. Lett. 35 12

    [5]

    Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D, Zhang J F 2014 Chin. Phys. B 23 048402

    [6]

    Wu L, Ang L K 2007 Phys. Plasmas 14 013105

    [7]

    Rasch J 2012 Ph. D. Dissertation (Sweden, Goteborg: Chalmers University of Technology)

    [8]

    Sazontov A, Semenov V, Buyanova M, Vdovicheva N, Anderson D, Lisak M, Puech J, Lapierre L 2005 Phys. Plasmas 12 093501

    [9]

    Semenov V E, Zharova N A, Anderson D, Lisak M, Puech J 2010 Phys. Plasmas 17 123503

    [10]

    Semenov V E, Rakova E I, Anderson D, Lisak M, Puech J 2007 Phys. Plasmas 14 033501

    [11]

    Semenov V E, Rakova E I, Udijak R, Anderson D, Lisak M, Puech J 2008 Phys. Plasmas 15 033501

    [12]

    Dong Y, Dong Z W, Yang W Y, Zhou Q H, Zhou H J 2013 Acta Phys. Sin. 62 197901 (in Chinese) [董烨, 董志伟, 杨温渊, 周前红, 周海京 2013 物理学报 62 197901]

    [13]

    Vlieks A E, Allen M A, Callin R S, Fowkes W R, Hoyt E W, Lebacqz J V, Lee T G 1989 IEEE Trans. Electr. Insul. 24 1023

    [14]

    Zhu F, Zhang Z C, Dai S, Luo J R 2011 Acta Phys. Sin. 60 084103 (in Chinese) [朱方, 张兆传, 戴舜, 罗继润 2011 物理学报 60 084103]

    [15]

    Yamaguchi S, Saito Y, Anami S, Michizono S 1992 IEEE Trans. Nucl. Sci. 39 278

    [16]

    Saito Y, Michizono S, Anami S, Kobayashi S 1993 IEEE Trans. Electr. Insul. 28 566

    [17]

    Saito Y 1992 Proceedings of the 1992 Linear Accelerator Conference Ottawa, Ontario, Canada, Aug. 24-28, 1992 p575

    [18]

    Miura A, Matsumoto H 1992 Proceedings of the 1992 Linear Accelerator Conference Ottawa, Ontario, Canada, Aug. 24-28, 1992 p124

    [19]

    Matsumoto H 1999 Proceedings of the 1999 Particle Accelerator Conference New York, USA, May 27-Apr. 2, 1999 p536

    [20]

    Vaughan J R M 1988 IEEE Trans. ED. 35 1172

    [21]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193

    [22]

    Hemmert D, Neuber A, Dickens J, Krompholz H, Hatfield L L, Kristiansen M 2000 IEEE Trans. Plasma Sci. 28 472

    [23]

    Sazontov A G, Nevchaev V E 2010 Phys. Plasmas 17 033509

    [24]

    Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [25]

    Michizono S, Saito Y, Suharyanto, Yamano Y, Kobayashi S 2004 Appl. Surf. Sci. 235 227

    [26]

    Foster J, Thomas M, Neuber A A 2009 J. Appl. Phys. 106 063310

    [27]

    Ivanov O A, Lobaev M A, Isaev V A, Vikharev A L 2010 Phys. Rev. ST Accel. Beams 13 022004

  • [1] 舒盼盼, 赵朋程, 王瑞. 110 GHz微波输出窗内表面次级电子倍增特性的电磁粒子模拟. 物理学报, 2023, 72(9): 095202. doi: 10.7498/aps.72.20222235
    [2] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究. 物理学报, 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [3] 张余炼, 祁辉荣, 胡碧涛, 温志文, 王海云, 欧阳群, 陈元柏, 张建. 基于复合结构的气体电子倍增器增益模拟和实验研究. 物理学报, 2017, 66(14): 142901. doi: 10.7498/aps.66.142901
    [4] 张雪, 王勇, 徐强. 双面次级电子倍增效应向单面次级电子倍增效应发展规律的研究. 物理学报, 2015, 64(20): 207902. doi: 10.7498/aps.64.207902
    [5] 董烨, 周前红, 杨温渊, 董志伟, 周海京. 高功率微波窗内外表面闪络击穿流体模拟研究. 物理学报, 2014, 63(18): 185206. doi: 10.7498/aps.63.185206
    [6] 张雪, 王勇, 范俊杰, 朱方, 张瑞. 金属壁与介质窗之间次级电子倍增效应的研究. 物理学报, 2014, 63(16): 167901. doi: 10.7498/aps.63.167901
    [7] 张雪, 范俊杰, 王勇. 刻周期半圆弧槽窗片对次级电子倍增效应的抑制. 物理学报, 2014, 63(22): 227902. doi: 10.7498/aps.63.227902
    [8] 徐刚, 谢平, 廖勇. X波段过模弯曲圆波导TM01-HE11模式变换器研究. 物理学报, 2013, 62(7): 078401. doi: 10.7498/aps.62.078401
    [9] 董烨, 董志伟, 杨温渊, 周前红, 周海京. 介质窗横向电磁场分布下的次级电子倍增效应. 物理学报, 2013, 62(19): 197901. doi: 10.7498/aps.62.197901
    [10] 陆世专, 游开明, 陈列尊, 王友文, 杨辉, 戴志平. 被圆相位片衍射的空心高斯光束的远场矢量结构特征. 物理学报, 2012, 61(23): 234201. doi: 10.7498/aps.61.234201
    [11] 蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富. 外磁场对介质表面次级电子倍增效应的影响. 物理学报, 2012, 61(7): 075101. doi: 10.7498/aps.61.075101
    [12] 朱方, 张兆传, 戴舜, 罗积润. 电介质表面纵向射频电场对次级电子倍增效应的影响. 物理学报, 2011, 60(8): 084103. doi: 10.7498/aps.60.084103
    [13] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究. 物理学报, 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [14] 蔡利兵, 王建国. 微波磁场和斜入射对介质表面次级电子倍增的影响. 物理学报, 2010, 59(2): 1143-1147. doi: 10.7498/aps.59.1143
    [15] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [16] 郝建红, 丁 武, 董志伟. 磁绝缘传输线振荡器中的次级电子倍增现象. 物理学报, 2006, 55(9): 4789-4794. doi: 10.7498/aps.55.4789
    [17] 牛新建, 李宏福, 喻胜, 谢仲怜, 杨仕文. 8mm高功率过模弯曲圆波导TE01—TM11模式变换. 物理学报, 2002, 51(10): 2291-2295. doi: 10.7498/aps.51.2291
    [18] 钱昌吉, 高国良, 李洪, 叶高翔. 无序杂质区域对沉积在胶体基底表面的金原子凝聚体分形结构的影响. 物理学报, 2002, 51(9): 1960-1964. doi: 10.7498/aps.51.1960
    [19] 邵元智, 林光明, 蓝图, 钟伟荣. 基于交换耦合模型纳米双相(硬磁/软磁)自旋体系的磁性. 物理学报, 2002, 51(10): 2362-2368. doi: 10.7498/aps.51.2362
    [20] 王伟, 黄岚, 张宇, 李昌敏, 张海黔, 顾宁, 沈浩瀛, 陈堂生, 郝丽萍, 彭力, 赵丽新. 用分子自组装技术制备的单电子器件的Monte Carlo模拟. 物理学报, 2002, 51(1): 63-67. doi: 10.7498/aps.51.63
计量
  • 文章访问数:  4145
  • PDF下载量:  290
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-15
  • 修回日期:  2014-07-15
  • 刊出日期:  2014-11-05

/

返回文章
返回