搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合物理化学气相沉积法制备MgB2单晶纳米晶片的研究

张焱 王越 马平 冯庆荣

引用本文:
Citation:

混合物理化学气相沉积法制备MgB2单晶纳米晶片的研究

张焱, 王越, 马平, 冯庆荣

Study on single crystal MgB2 nanosheets grown by hybrid physical-chemical vapor deposition

Zhang Yan, Wang Yue, Ma Ping, Feng Qing-Rong
PDF
导出引用
  • 利用混合物理化学气相沉积法在石墨衬底上制备出了晶形为六角结构、厚度不同、径向尺寸不一的MgB2单晶纳米晶片. 利用纳米定向转移技术将此晶片转移到了碳支持膜铜网上, 以便对其精细结构等物性进行表征. 电输运测量和磁性测量结果都表明晶片具有超导电性: Tconset=38 K, Tc(0)=33 K. 扫描电子显微镜图像表明, 晶片表面平整、厚度分布在几个纳米到200 nm之间, 宽度从几微米到上百微米; 高分辨透射电镜图像显示出晶片具有周期性晶格条纹. 选区电子衍射数据与MgB2已有的单晶衍射数据相符. 这些测量结果证实了其确为高质量单晶MgB2超导纳米晶片. 本文不仅提出了一种全新的制备单晶MgB2的方法, 也观察到了纳米尺度MgB2单晶的零电阻现象, 为后续的磁通钉扎、纳米力学性能等领域的深入研究提供了合适的素材.
    This report is focused on the MgB2 nanosheets which have a hexagonal single crystal structure with variable thickness and different radial dimensions. The nanosheets are fabricated by hybird physical-chemical vapor deposition for the first time, as far as we know, and meanwhile they can be site-specific transferred so as to make physical properties measurement. Results of electrical and magnetic measurements indicate that the nanosheets is superconductive with a Tconset=38 K, Tc (0)=33 K. The images of scanning electrical microscope show that the nanosheets have a nanoscale thickness and have not only a large scale in wildth from several microns to hundreds of microns but also a flat cleaning surface. The selected area electrical diffraction data is consistent with the early report of MgB2 diffraction. According to those results, the single crystal nanosheets with high quality can be surely indentified as MgB2. It suggests a new technique for MgB2 single crystal fabrication, and a zero electrical behavior is observed in nanoscale single crystal MgB2. This could be a new opportunity to make a right material for the afterward research such as flux vortices, nanoscale mechanical properties.
    • 基金项目: 国家重点基础研究发展计划(批准号:2006CD601004,2011CB605904,2011CBA00104)、国家自然科学基金(批准号:51177160,11074008)和国家自然科学基金国家基础科学人才培养基金(批准号:J0630311)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2006CD601004, 2011CB605904, 2011CBA00104), the National Natural Science Foundation of China (Grant Nos. 51177160, 11074008), and the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J0630311).
    [1]

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63

    [2]

    Kortus J, Mazin I I, Belashchenko K D, Antropov V P, Boyer L L 2001 Phys. Rev. Lett. 86 4656

    [3]

    Finnemore D K, Ostenson J E, Bud'ko S L, Lapertot G, Canfield P C 2001 Phys. Rev. Lett. 86 2420

    [4]

    Zhuang C G, Meng S, Zhang C Y, Feng Q R, Gan Z Z, Yang H, Jia Y, Wen H H, Xi X X 2008 J. Appl. Phys. 104 013924

    [5]

    Xi X X, Pogrebnyakov A V, Xu S Y, Chen K, Cui Y, Maertz E C, Zhuang C G, Li Q, Lamborn D R, Redwing J M, Liu Z K, Soukiassian A, Schlom D G, Weng X J, Dickey E C, Chen Y B, Tian W, Pan X Q, Cybart S A, Dynes R C 2007 Physica C 456 22

    [6]

    Souma S, Machida Y, Sato T, Takahashi T, Matsui H, Wang S C, Ding H, Kaminski A, Campuzano J C, Sasaki S, Kadowaki K 2003 Nature 423 65

    [7]

    Liu A Y, Mazin I I, Kortus J 2001 Phys. Rev. Lett. 87 087005

    [8]

    Wang Y Z, Zhuang C G, Sun X, Huang X, Fu Q, Liao Z M, Yu D P, Feng Q R 2009 Supercond. Sci. Technol. 22 125015

    [9]

    Sun X, Huang X, Wang Y Z, Feng Q R 2011 Acta Phys. Sin. 60 087401 (in Chinese) [孙玄, 黄煦, 王亚洲, 冯庆荣 2011 物理学报 60 087401]

    [10]

    Zhang Y H, Lin Z Y, Dai Q, Li D Y, Wang Y B, Zhang Y, Wang Y, Feng Q R 2011 Supercond. Sci. Technol. 24 015103

    [11]

    Zhang C, Wang Y, Wang D, Zhang Y, Liu Z H, Feng Q R, Gan Z Z 2013 J. Appl. Phys. 114 023903

    [12]

    Kumakura H, Matsumoto A, Fuji H, Togano K 2001 Appl. Phys. Lett. 79 2435

    [13]

    Wu Y, Messer B, Yang P 2001 Adv. Mater. 13 1487

    [14]

    Nath M, Parkinson B A 2006 Adv. Mater. 18 1865

    [15]

    Jha A K, Khare N 2009 Supercond. Sci. Technol. 22 075017

    [16]

    Lai S H, Liu S C, Lan M D 2007 J. Cryst. Growth 304 460

    [17]

    Yang Q, Sha J, Ma X Y, Wang J, Niu J, Yang D 2004 IEEE 13th International Conference on Semiconducting and Insulating Materials Beijing, China, 20-25 September, 2004 p164

    [18]

    Nath M, Parkinson B A 2007 J. Am. Chem. Soc. 129 113

    [19]

    Wang Y Z, Zhuang C G, Gao J Y, Shan X D, Zhang J M, Liao Z M, Xu H J, Yu D P, Feng Q R 2009 J. Am. Chem. Soc. 131 2436

    [20]

    Chen W M, Liu W, Chen C P, Wang R M, Feng Q R 2011 Cryst. Eng. Commun. 13 3959

    [21]

    Wu C S, Chang Y C, Chen W M, Chen C P, Feng Q R 2012 Nanotechnology 23 465706

    [22]

    Zeng X H, Pogrebnyakov A V, Kotcharov A, Jones J E, Xi X X, Lysczek E M, Redwing J M, Xu S, Li Q, Lettieri J, Schlom D G, Tian W, Pan X, Liu Z K 2002 Nat. Mater. 1 35

    [23]

    Joseph G 2003 Scanning Electron Microscopy and X-Ray Microanalysis (3rd Ed.) (New York: Kluwer Academic Plenum Publishers) p72

    [24]

    Gao P X, Ding Y, Mai W J, Hughes W L, Lao C S, Wang Z L 2005 Science 309 1700

    [25]

    Liu C, Hu Z, Wu Q, Wang X Z, Chen Y, Sang H, Zhu J M, Deng S Z, Xu N S 2005 J. Am. Chem. Soc. 127 1318

    [26]

    Sanc I 1990 Pattern 00-041-1478 Graphite-2H Polytechna (Czechoslovakia: Panska)

    [27]

    Zhu R, Zhao Q, Xu J, Liu B, Gao J Y, Zhang J M, Zhu W G, Xu H J, Sun Y H, Fu Q, Chen L, Yu D P 2012 Cryst. Eng. Commun. 14 2

    [28]

    Wang J, Zhuang C G, Li J, Wu Z W, Li S, Chu H F, Feng Q R, Zheng D N 2009 Supercond. Sci. Technol. 22 045020

    [29]

    Zhang C Y, Wang Y B, Hu W W, Feng Q R 2010 Supercond. Sci. Technol. 23 065017

    [30]

    Xi X X 2009 Supercond. Sci. Technol. 22 043001

  • [1]

    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 Nature 410 63

    [2]

    Kortus J, Mazin I I, Belashchenko K D, Antropov V P, Boyer L L 2001 Phys. Rev. Lett. 86 4656

    [3]

    Finnemore D K, Ostenson J E, Bud'ko S L, Lapertot G, Canfield P C 2001 Phys. Rev. Lett. 86 2420

    [4]

    Zhuang C G, Meng S, Zhang C Y, Feng Q R, Gan Z Z, Yang H, Jia Y, Wen H H, Xi X X 2008 J. Appl. Phys. 104 013924

    [5]

    Xi X X, Pogrebnyakov A V, Xu S Y, Chen K, Cui Y, Maertz E C, Zhuang C G, Li Q, Lamborn D R, Redwing J M, Liu Z K, Soukiassian A, Schlom D G, Weng X J, Dickey E C, Chen Y B, Tian W, Pan X Q, Cybart S A, Dynes R C 2007 Physica C 456 22

    [6]

    Souma S, Machida Y, Sato T, Takahashi T, Matsui H, Wang S C, Ding H, Kaminski A, Campuzano J C, Sasaki S, Kadowaki K 2003 Nature 423 65

    [7]

    Liu A Y, Mazin I I, Kortus J 2001 Phys. Rev. Lett. 87 087005

    [8]

    Wang Y Z, Zhuang C G, Sun X, Huang X, Fu Q, Liao Z M, Yu D P, Feng Q R 2009 Supercond. Sci. Technol. 22 125015

    [9]

    Sun X, Huang X, Wang Y Z, Feng Q R 2011 Acta Phys. Sin. 60 087401 (in Chinese) [孙玄, 黄煦, 王亚洲, 冯庆荣 2011 物理学报 60 087401]

    [10]

    Zhang Y H, Lin Z Y, Dai Q, Li D Y, Wang Y B, Zhang Y, Wang Y, Feng Q R 2011 Supercond. Sci. Technol. 24 015103

    [11]

    Zhang C, Wang Y, Wang D, Zhang Y, Liu Z H, Feng Q R, Gan Z Z 2013 J. Appl. Phys. 114 023903

    [12]

    Kumakura H, Matsumoto A, Fuji H, Togano K 2001 Appl. Phys. Lett. 79 2435

    [13]

    Wu Y, Messer B, Yang P 2001 Adv. Mater. 13 1487

    [14]

    Nath M, Parkinson B A 2006 Adv. Mater. 18 1865

    [15]

    Jha A K, Khare N 2009 Supercond. Sci. Technol. 22 075017

    [16]

    Lai S H, Liu S C, Lan M D 2007 J. Cryst. Growth 304 460

    [17]

    Yang Q, Sha J, Ma X Y, Wang J, Niu J, Yang D 2004 IEEE 13th International Conference on Semiconducting and Insulating Materials Beijing, China, 20-25 September, 2004 p164

    [18]

    Nath M, Parkinson B A 2007 J. Am. Chem. Soc. 129 113

    [19]

    Wang Y Z, Zhuang C G, Gao J Y, Shan X D, Zhang J M, Liao Z M, Xu H J, Yu D P, Feng Q R 2009 J. Am. Chem. Soc. 131 2436

    [20]

    Chen W M, Liu W, Chen C P, Wang R M, Feng Q R 2011 Cryst. Eng. Commun. 13 3959

    [21]

    Wu C S, Chang Y C, Chen W M, Chen C P, Feng Q R 2012 Nanotechnology 23 465706

    [22]

    Zeng X H, Pogrebnyakov A V, Kotcharov A, Jones J E, Xi X X, Lysczek E M, Redwing J M, Xu S, Li Q, Lettieri J, Schlom D G, Tian W, Pan X, Liu Z K 2002 Nat. Mater. 1 35

    [23]

    Joseph G 2003 Scanning Electron Microscopy and X-Ray Microanalysis (3rd Ed.) (New York: Kluwer Academic Plenum Publishers) p72

    [24]

    Gao P X, Ding Y, Mai W J, Hughes W L, Lao C S, Wang Z L 2005 Science 309 1700

    [25]

    Liu C, Hu Z, Wu Q, Wang X Z, Chen Y, Sang H, Zhu J M, Deng S Z, Xu N S 2005 J. Am. Chem. Soc. 127 1318

    [26]

    Sanc I 1990 Pattern 00-041-1478 Graphite-2H Polytechna (Czechoslovakia: Panska)

    [27]

    Zhu R, Zhao Q, Xu J, Liu B, Gao J Y, Zhang J M, Zhu W G, Xu H J, Sun Y H, Fu Q, Chen L, Yu D P 2012 Cryst. Eng. Commun. 14 2

    [28]

    Wang J, Zhuang C G, Li J, Wu Z W, Li S, Chu H F, Feng Q R, Zheng D N 2009 Supercond. Sci. Technol. 22 045020

    [29]

    Zhang C Y, Wang Y B, Hu W W, Feng Q R 2010 Supercond. Sci. Technol. 23 065017

    [30]

    Xi X X 2009 Supercond. Sci. Technol. 22 043001

  • [1] 果辰, 蔡欣炜, 罗文浩, 黄子耕, 冯庆荣, 甘子钊. 原位电阻测试分析Mg(BH4)2制备MgB2的成相过程. 物理学报, 2021, 70(19): 197401. doi: 10.7498/aps.70.20210620
    [2] 郭志超, 李平林. 晶粒细化对MgB2超导临界电流密度的作用. 物理学报, 2014, 63(6): 067401. doi: 10.7498/aps.63.067401
    [3] 陈艺灵, 张辰, 何法, 王达, 王越, 冯庆荣. MgB2超导膜的厚度与其Jc(5K,0T)的关系. 物理学报, 2013, 62(19): 197401. doi: 10.7498/aps.62.197401
    [4] 王银博, 薛驰, 冯庆荣. 钛离子辐照对MgB2超导薄膜的载流能力和磁通钉扎能力的影响. 物理学报, 2012, 61(19): 197401. doi: 10.7498/aps.61.197401
    [5] 孙辉辉, 杨烨, 王磊, Cheng C. H., 冯勇, 赵勇. 柠檬酸掺杂的MgB2超导体钉扎机理的研究. 物理学报, 2010, 59(5): 3488-3493. doi: 10.7498/aps.59.3488
    [6] 刘亮, 马小柏, 聂瑞娟, 姚丹, 王福仁. Mg/B多层膜退火法中不同制备条件对MgB2超导薄膜性质的影响. 物理学报, 2009, 58(11): 7966-7971. doi: 10.7498/aps.58.7966
    [7] 舒华兵, 刘 甦, 马 荣, 刘 楣. 第一性原理计算MgB2薄膜拉伸对超导电性的影响. 物理学报, 2007, 56(12): 7262-7265. doi: 10.7498/aps.56.7262
    [8] 余增强, 吴 克, 马小柏, 聂瑞娟, 王福仁. 多层膜外退火方法制备MgB2超导薄膜. 物理学报, 2007, 56(1): 512-517. doi: 10.7498/aps.56.512
    [9] 曾春来, 唐东升, 刘星辉, 海 阔, 羊 亿, 袁华军, 解思深. 化学气相沉积法中SnO2一维纳米结构的控制生长. 物理学报, 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
    [10] 史力斌, 任骏原, 张凤云, 张国华, 余增强. 关于MgB2/Al2O3超导薄膜电阻转变和各向异性的研究. 物理学报, 2007, 56(9): 5353-5358. doi: 10.7498/aps.56.5353
    [11] 张现平, 马衍伟, 高召顺, 禹争光, K. Watanabe, 闻海虎. 纳米C和SiC掺杂对MgB2带材超导性能的影响. 物理学报, 2006, 55(9): 4873-4877. doi: 10.7498/aps.55.4873
    [12] 王淑芳, B. B. Jin, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 程波林, 杨国桢. MgB2超导薄膜的微波测量. 物理学报, 2005, 54(5): 2325-2328. doi: 10.7498/aps.54.2325
    [13] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 樊 荣, 陈仙辉, 曹烈兆. 双能隙超导体MgB2的热导. 物理学报, 2003, 52(3): 683-686. doi: 10.7498/aps.52.683
    [14] 吴柏枚, 李 波, 杨东升, 郑卫华, 李世燕, 曹烈兆, 陈仙辉. 新型超导体MgB2和MgCNi3热、电输运性质研究. 物理学报, 2003, 52(12): 3150-3154. doi: 10.7498/aps.52.3150
    [15] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 陈仙辉, 曹烈兆. MgB2混合态热导率的反常增强. 物理学报, 2003, 52(8): 2015-2019. doi: 10.7498/aps.52.2015
    [16] 王淑芳, 朱亚斌, 张 芹, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 杨国桢. 利用电泳法在金属基底上制备MgB2超导厚膜. 物理学报, 2003, 52(6): 1505-1508. doi: 10.7498/aps.52.1505
    [17] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [18] 李慧玲, 阮可青, 李世燕, 莫维勤, 樊荣, 罗习刚, 陈仙辉, 曹烈兆. MgB2和Mg0.93Li0.07B2的电阻率与霍尔效应研究. 物理学报, 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
    [19] 谭明秋, 陶向明. 高温超导体MgB2的电子结构研究. 物理学报, 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
    [20] 杨宏顺, 余旻, 李世燕, 李鹏程, 柴一晟, 章良, 陈仙辉, 曹烈兆. 新型超导体MgB2的热电势和电阻率研究. 物理学报, 2001, 50(6): 1197-1200. doi: 10.7498/aps.50.1197
计量
  • 文章访问数:  4708
  • PDF下载量:  764
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-28
  • 修回日期:  2014-07-28
  • 刊出日期:  2014-12-05

/

返回文章
返回