搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用自发布里渊散射测量液体声速

张颖 王升 郑雄 何茂刚

引用本文:
Citation:

利用自发布里渊散射测量液体声速

张颖, 王升, 郑雄, 何茂刚

Speed of sound measurement from spontaneous Brillouin scattering

Zhang Ying, Wang Sheng, Zheng Xiong, He Mao-Gang
PDF
导出引用
  • 为了克服共振干涉法在液体的热力学声速和高频声速测量方面精度不高的问题, 本文建立了一种基于自发布里渊散射原理的测定液体声速的实验装置. 利用法布里-珀罗干涉仪对散射光进行扫描滤波, 数据采集卡结合光子计数器对散射光进行探测, 设计了一种散射光信息采集分析方法. 该实验方法有效的解决了传统布里渊散射方法中信号失真的问题, 显著地提升了液体声速测量精度. 对308.6–906.2 MHz内298.15 K饱和液相CCl4声速进行了测量, 测量结果与文献值具有较好一致性. 利用法布里-珀罗干涉仪周期性扫描的滤波原理, 通过在测量得到的布里渊频移上加减整数倍个自由波谱区, 得到了更大频率的波谱信息, 进而设计一种测定介质高频声速的方法. 对CCl4在5406.1–5521.0 MHz频段内的声速进行了测量. 实验结果显示, CCl4的热力学声速随频率无明显变化, 而高频声速随频率的增大呈增大趋势且远大于热力学声速, 证实CCl4具有色散现象.
    In order to overcome the problem of poor accuracy of resonant interferometer method in the measurement of thermodynamic sound speed and hypersound speed of liquids an experimental setup for measuring the sound speed of liquids is established based on the principle of spontaneous Brillouin light scattering. A Fabry-Perot interferometer is used to filter the scattered light and a data acquisition card as well as a photon counting head is used to detect and analyze the scattered light, then a data acquisition and analysis method of scattered light is presented. This method overcomes the limitation of the signal distortion in conventional Brillouin light scattering and increases the measuring accuracy of the sound speed of liquids remarkably. The sound speed of saturated liquid CCl4 is measured in the frequency range of 308.6 to 906.2 MHz at 298.15 K. Results agree well with the data reported in the literature, and show that the experimental method is feasible. In addition, the method for measuring the ultrasonic speed is proposed by adding several free spectral ranges to the measured Brillouin frenquency-shift. The ultrasonic speed of CCl4 measured is in the frequency range of 5406.1–5521.0 MHz. It is shown that the thermodynamic sound speed does not change with the sound frequency, while the hypersound speed increases with the increase of sound frequency and it is much greater than the thermodynamic sound speed, which proves the dispersion phenomena of CCl4.
    • 基金项目: 国家自然科学基金(批准号: 51106129)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51106129).
    [1]

    He M G, Liu Z G 2002 Acta Phys. Sin. 51 1004 (in Chinese) [何茂刚, 刘志刚 2002 物理学报 51 1004]

    [2]

    Liu Q, Feng X J, Duan Y Y 2014 CIESC Journal 65 1162 (in Chinese) [刘强, 冯晓娟, 段远源 2014 化工学报 65 1162]

    [3]

    Wilhelm E, Letcher T M 2010 Heat Capacities: Liquids, Solutions and Vapours (Cambridge:RSC Publishing) p185

    [4]

    Zuckerwar A J 2002 Handbook of the Speed of Sound in Real Gases (Volume 1) (Amsterdam:Academic Press) p89

    [5]

    Wang X F, Xiong X C, Gao M Z 2011 Acta Phys. Sin. 60 114303 (in Chinese) [王新峰, 熊显潮, 高敏忠 2011 物理学报 60 114303]

    [6]

    Herzfeld K F, Litovitz T A 1959 Absorption and Dispersion of Ultrasonic Waves (New York: Academic Press) p49

    [7]

    Geng H Y, Wu Q, Tan H, Cai L C, Jing F Q 2002 Chin. Phys. 11 1188

    [8]

    Liu K, Chen J S 2011 Chin. Phys. B 20 020501

    [9]

    An B L, Liu Q, Duan Y Y 2012 J. Eng. Thermophys. 33 561 (in Chinese) [安保林, 刘强, 段远源 2012 工程热物理学报 33 561]

    [10]

    Ball S J, Trusler J P M 2001 Int. J. Thermophys. 22 427

    [11]

    Fröba A P, Krzeminski K, Leipertz A 2004 Int. J. Thermophys. 25 987

    [12]

    Fröba A P, Botero C, Leipertz A 2006 Int. J. Thermophys. 27 1609

    [13]

    Chu B 1991 Laser Light Scattering: Basic Principles and Practice (2nd Ed.) (New York: Academic Press) p22

    [14]

    Mountain R D 1966 Rev. Mod. Phys. 38 205

    [15]

    Takagi T, Sawada K, Urakawa H, Ueda M, Cibulka I 2004 J. Chem. Thermodyn. 36 659

    [16]

    Bobik M, Niepmann R, Marius W J 1979 J. Chem. Thermodyn. 11 351

    [17]

    Kalra C K, Singh C K, Spah C D 1994 J. Chem. Eng. Data 39 372

    [18]

    Klyohara O, Arakawa K 1971 Bulletin of the Chemical Society of Japan 44 1224

    [19]

    Narayana L K, Swamy M K 1989 J. Chem. Eng. Data 34 19

    [20]

    Fort J R, Moore R W 1965 Transactions of the Faraday Society 61 2102

    [21]

    Lagemann T R, Mcmillan R D, Woolf E W 1949 J. Chem. Phys. 17 369

  • [1]

    He M G, Liu Z G 2002 Acta Phys. Sin. 51 1004 (in Chinese) [何茂刚, 刘志刚 2002 物理学报 51 1004]

    [2]

    Liu Q, Feng X J, Duan Y Y 2014 CIESC Journal 65 1162 (in Chinese) [刘强, 冯晓娟, 段远源 2014 化工学报 65 1162]

    [3]

    Wilhelm E, Letcher T M 2010 Heat Capacities: Liquids, Solutions and Vapours (Cambridge:RSC Publishing) p185

    [4]

    Zuckerwar A J 2002 Handbook of the Speed of Sound in Real Gases (Volume 1) (Amsterdam:Academic Press) p89

    [5]

    Wang X F, Xiong X C, Gao M Z 2011 Acta Phys. Sin. 60 114303 (in Chinese) [王新峰, 熊显潮, 高敏忠 2011 物理学报 60 114303]

    [6]

    Herzfeld K F, Litovitz T A 1959 Absorption and Dispersion of Ultrasonic Waves (New York: Academic Press) p49

    [7]

    Geng H Y, Wu Q, Tan H, Cai L C, Jing F Q 2002 Chin. Phys. 11 1188

    [8]

    Liu K, Chen J S 2011 Chin. Phys. B 20 020501

    [9]

    An B L, Liu Q, Duan Y Y 2012 J. Eng. Thermophys. 33 561 (in Chinese) [安保林, 刘强, 段远源 2012 工程热物理学报 33 561]

    [10]

    Ball S J, Trusler J P M 2001 Int. J. Thermophys. 22 427

    [11]

    Fröba A P, Krzeminski K, Leipertz A 2004 Int. J. Thermophys. 25 987

    [12]

    Fröba A P, Botero C, Leipertz A 2006 Int. J. Thermophys. 27 1609

    [13]

    Chu B 1991 Laser Light Scattering: Basic Principles and Practice (2nd Ed.) (New York: Academic Press) p22

    [14]

    Mountain R D 1966 Rev. Mod. Phys. 38 205

    [15]

    Takagi T, Sawada K, Urakawa H, Ueda M, Cibulka I 2004 J. Chem. Thermodyn. 36 659

    [16]

    Bobik M, Niepmann R, Marius W J 1979 J. Chem. Thermodyn. 11 351

    [17]

    Kalra C K, Singh C K, Spah C D 1994 J. Chem. Eng. Data 39 372

    [18]

    Klyohara O, Arakawa K 1971 Bulletin of the Chemical Society of Japan 44 1224

    [19]

    Narayana L K, Swamy M K 1989 J. Chem. Eng. Data 34 19

    [20]

    Fort J R, Moore R W 1965 Transactions of the Faraday Society 61 2102

    [21]

    Lagemann T R, Mcmillan R D, Woolf E W 1949 J. Chem. Phys. 17 369

  • [1] 管韵, 王波波. 环面黑洞的热力学函数. 物理学报, 2022, (): . doi: 10.7498/aps.71.20212370
    [2] 管韵, 王波波. 环面黑洞的热力学函数. 物理学报, 2022, 71(11): 110401. doi: 10.7498/aps.70.20212370
    [3] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [4] 马平, 韩一平, 张宁, 田得阳, 石安华, 宋强. 高超声速类HTV2模型全目标电磁散射特性实验研究. 物理学报, 2022, 71(8): 084101. doi: 10.7498/aps.71.20211901
    [5] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响. 物理学报, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [6] 商景诚, 吴涛, 何兴道, 杨传音. 气体自发瑞利-布里渊散射的理论分析及压强反演. 物理学报, 2018, 67(3): 037801. doi: 10.7498/aps.67.20171672
    [7] 孙其诚. 颗粒介质的结构及热力学. 物理学报, 2015, 64(7): 076101. doi: 10.7498/aps.64.076101
    [8] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭 华. 钒的高压声速测量. 物理学报, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [9] 宋萍, 王青松, 戴诚达, 蔡灵仓, 张毅, 翁继东. 低孔隙度疏松铝的高压声速与冲击熔化. 物理学报, 2011, 60(4): 046201. doi: 10.7498/aps.60.046201
    [10] 胡建波, 周显明, 谭 华. 反向碰撞法测量Sn的高压卸载声速. 物理学报, 2008, 57(4): 2347-2351. doi: 10.7498/aps.57.2347
    [11] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速. 物理学报, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
    [12] 欧发. 耗散系统的准热力学模型. 物理学报, 1995, 44(10): 1541-1550. doi: 10.7498/aps.44.1541
    [13] 周义昌, 余超凡. 一维线性链的亚声速和超声速孤立子. 物理学报, 1992, 41(12): 2016-2023. doi: 10.7498/aps.41.2016
    [14] 单军, 林金谷, 佘永柏, 金佩, 傅克坚, 张志三. 紫外激光离解四氯化钛产生的钛原子的受激喇曼散射. 物理学报, 1990, 39(5): 754-763. doi: 10.7498/aps.39.754
    [15] 王国樑, 戴培英. 含红外发散的低温玻璃超声声速理论. 物理学报, 1989, 38(7): 1146-1153. doi: 10.7498/aps.38.1146
    [16] 宗有泰, 钱幼能, 周鸿赉. 超流Hell中第一声、第二声和第四声声速的测量. 物理学报, 1980, 29(11): 1513-1516. doi: 10.7498/aps.29.1513
    [17] 唐应吾. 负声速梯度浅海中的平均声强. 物理学报, 1977, 26(3): 225-231. doi: 10.7498/aps.26.225
    [18] 孙鑫, 叶红娟, 黄静宜. 铁磁体的热力学性质. 物理学报, 1964, 20(9): 940-946. doi: 10.7498/aps.20.940
    [19] 庄逢甘. 查甫雷金气体的超声速运动. 物理学报, 1955, 11(2): 107-124. doi: 10.7498/aps.11.107
    [20] 程开甲. 内耗的热力学研究(Ⅰ). 物理学报, 1955, 11(2): 163-178. doi: 10.7498/aps.11.163
计量
  • 文章访问数:  5526
  • PDF下载量:  507
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-16
  • 修回日期:  2014-09-19
  • 刊出日期:  2015-02-05

/

返回文章
返回