搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超材料的定向传热结构研究与设计

孙良奎 于哲峰 黄洁

引用本文:
Citation:

基于超材料的定向传热结构研究与设计

孙良奎, 于哲峰, 黄洁

Research and design of directional heat transmission structure based on metamaterial

Sun Liang-Kui, Yu Zhe-Feng, Huang Jie
PDF
导出引用
  • 在热斗篷研究的基础上, 提出定向传热结构的研究. 基于变换热力学, 采用坐标斜变换推导了定向传热结构热导率分布的表达式. 数值计算结果表明, 外部热流流经定向传热区域时, 热流向设计的高温面流动, 而设计的低温面温度较低. 此外, 在导出的热导率分布表达式的基础上, 进一步进行坐标旋转变换, 得到的热导率表达式只有相互垂直的两个分量. 计算结果表明, 沿高温面法向的热导率增大时, 传热效率提高, 而且经过坐标旋转变换后, 高温面与低温面的温差增大. 定向传热在红外隐身、热防护领域具有潜在的应用价值.
    Based on the research of thermal cloak, directional heat transmission structure is proposed in this paper. On the basis of transformation thermodynamics, the thermal conductivity expression for directional heat transmission structure is derived by the oblique coordinate transformation. The results from the numeric calculation indicate that the heat flux flows to the designed high temperature side while the low temperature side remains at low temperature. Furthermore, rotational transformation is performed on the basis of oblique coordinate transformation. The derived thermal conductivity expression has two vertical segments. The calculation results display that with the increase of the thermal conductivity along the normal of the high temperature side, the heat transmission efficiency is improved greatly. Moreover, the temperature difference between the high and low temperature side increases after the rotational transformation. Directional heat transmission has potential applications in infrared stealth and heat protection.
    [1]

    Zhang J J, Huang J T, Luo Y, Chen H S, Kong J A, Wu B I 2008 Phys. Rev. B 77 035116

    [2]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [3]

    Cummer S A, Popa B, Schurig D, Smith D R, Pendry J 2006 Phys. Rev. E 74 036621

    [4]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 97

    [5]

    Valentine J, Li J, Zentgraf T, Bartal G, Zhang X 2009 Nat. Mater. 10 1038

    [6]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [7]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [8]

    Yang C F, Yang J J, Huang M, Peng J H, Cai G H 2010 Comput. Mater. Sci. 49 820

    [9]

    Yang J J, Huang M, Yang C F, Peng J H, Zong R 2010 Energies 3 1335

    [10]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907

    [11]

    Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504

    [12]

    Yang T Z, Huang L J, Chen F, Xu W K 2013 J. Phys. D: Appl. Phys. 46 305102

    [13]

    Mao F C, Li T H, Huang M, Yang J J, Chen J C 2014 Acta Phys. Sin. 63 014401 (in Chinese) [毛福春, 李廷华, 黄铭, 杨晶晶, 陈俊昌 2014 物理学报 63 014401]

    [14]

    Guenneau S, Amra C 2013 Opt. Express 21 6578

    [15]

    Li T H, Mao F C, Huang M, Yang J J, Chen J C 2014 Acta Phys. Sin. 63 054401 (in Chinese) [李廷华, 毛福春, 黄铭, 杨晶晶, 陈俊昌 2014 物理学报 63 054401]

    [16]

    Schinnty R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901

    [17]

    Han T C, Yuan T, Li B W, Qiu C W 2013 Sci. Rep. 3 1593

    [18]

    Xiao H, Lin Z W 2013 Appl. Phys. Lett. 102 211912

  • [1]

    Zhang J J, Huang J T, Luo Y, Chen H S, Kong J A, Wu B I 2008 Phys. Rev. B 77 035116

    [2]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [3]

    Cummer S A, Popa B, Schurig D, Smith D R, Pendry J 2006 Phys. Rev. E 74 036621

    [4]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 97

    [5]

    Valentine J, Li J, Zentgraf T, Bartal G, Zhang X 2009 Nat. Mater. 10 1038

    [6]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [7]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [8]

    Yang C F, Yang J J, Huang M, Peng J H, Cai G H 2010 Comput. Mater. Sci. 49 820

    [9]

    Yang J J, Huang M, Yang C F, Peng J H, Zong R 2010 Energies 3 1335

    [10]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907

    [11]

    Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504

    [12]

    Yang T Z, Huang L J, Chen F, Xu W K 2013 J. Phys. D: Appl. Phys. 46 305102

    [13]

    Mao F C, Li T H, Huang M, Yang J J, Chen J C 2014 Acta Phys. Sin. 63 014401 (in Chinese) [毛福春, 李廷华, 黄铭, 杨晶晶, 陈俊昌 2014 物理学报 63 014401]

    [14]

    Guenneau S, Amra C 2013 Opt. Express 21 6578

    [15]

    Li T H, Mao F C, Huang M, Yang J J, Chen J C 2014 Acta Phys. Sin. 63 054401 (in Chinese) [李廷华, 毛福春, 黄铭, 杨晶晶, 陈俊昌 2014 物理学报 63 054401]

    [16]

    Schinnty R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901

    [17]

    Han T C, Yuan T, Li B W, Qiu C W 2013 Sci. Rep. 3 1593

    [18]

    Xiao H, Lin Z W 2013 Appl. Phys. Lett. 102 211912

  • [1] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [3] 王浩, 姚能智, 王斌, 王学生. 流动隐身衣的均匀化设计与减阻特性研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220346
    [4] 王浩, 姚能智, 王斌, 王学生. 流动隐身衣的均匀化设计与减阻特性. 物理学报, 2022, 71(13): 134703. doi: 10.7498/aps.70.20220346
    [5] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器. 物理学报, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [6] 崔铁军, 吴浩天, 刘硕. 信息超材料研究进展. 物理学报, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
    [7] 金柯, 刘永强, 韩俊, 杨崇民, 王颖辉, 王慧娜. 基于超材料的中波红外宽带偏振转换研究. 物理学报, 2017, 66(13): 134201. doi: 10.7498/aps.66.134201
    [8] 张连超, 邱丽莉, 芦薇, 于颖杰, 孟子晖, 王树山, 薛敏, 刘文芳. 蛋白石型光子晶体红外隐身材料的制备. 物理学报, 2017, 66(8): 084208. doi: 10.7498/aps.66.084208
    [9] 汪肇坤, 杨振宇, 陶欢, 赵茗. 复合结构螺旋超材料对光波前的高效调控. 物理学报, 2016, 65(21): 217802. doi: 10.7498/aps.65.217802
    [10] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [11] 孙良奎, 于哲峰, 黄洁. 基于超材料的平板二维定向传热结构设计. 物理学报, 2015, 64(22): 224401. doi: 10.7498/aps.64.224401
    [12] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [13] 苏妍妍, 龚伯仪, 赵晓鹏. 基于双负介质结构单元的零折射率超材料. 物理学报, 2012, 61(8): 084102. doi: 10.7498/aps.61.084102
    [14] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [15] 赵延, 相建凯, 李飒, 赵晓鹏. 基于双鱼网结构的可见光波段超材料. 物理学报, 2011, 60(5): 054211. doi: 10.7498/aps.60.054211
    [16] 钟顺林, 韩满贵, 邓龙江. 超材料微波磁导率色散行为的电可调控性研究. 物理学报, 2011, 60(11): 117501. doi: 10.7498/aps.60.117501
    [17] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备. 物理学报, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [18] 相建凯, 马忠洪, 赵延, 赵晓鹏. 可见光波段超材料的平面聚焦效应. 物理学报, 2010, 59(6): 4023-4029. doi: 10.7498/aps.59.4023
    [19] 闻孺铭, 李凌云, 韩克武, 孙晓玮. 微波超材料隐形结构及其新型快速实验方案. 物理学报, 2010, 59(7): 4607-4611. doi: 10.7498/aps.59.4607
    [20] 付非亚, 陈微, 周文君, 刘安金, 邢名欣, 王宇飞, 郑婉华. 纳米三明治结构光子超材料中电磁场振荡行为研究. 物理学报, 2010, 59(12): 8579-8583. doi: 10.7498/aps.59.8579
计量
  • 文章访问数:  5932
  • PDF下载量:  367
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-21
  • 修回日期:  2014-10-27
  • 刊出日期:  2015-04-05

/

返回文章
返回