搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

R型铁氧体BaFe4-xTi2+xO11的化学组态以及磁性行为的研究

胡亚亚 朱媛媛 周贝贝 刘硕 刘雍 熊锐 石兢

引用本文:
Citation:

R型铁氧体BaFe4-xTi2+xO11的化学组态以及磁性行为的研究

胡亚亚, 朱媛媛, 周贝贝, 刘硕, 刘雍, 熊锐, 石兢

Magnetic property and electronic structure of BaFe4-xTi2+xO11

Hu Ya-Ya, Zhu Yuan-Yuan, Zhou Bei-Bei, Liu Shuo, Liu Yong, Xiong Rui, Shi Jing
PDF
导出引用
  • 本文通过传统的固相反应法制备了R型六角铁氧体BaFe4-xTi2+xO11 (x= 0, 0.25, 0.5, 0.75, 1), 并且对它的原子价态以及磁性行为进行了研究. X 射线光电子能谱(XPS)结果显示了随着掺杂含量的增加, 体系中Fe3+离子逐渐减少而Fe2+离子逐渐增加. 由于具有非对称结构的阻挫晶格中存在各种关联作用的竞争, 使得BaFe4-xTi2+xO11体系表现出了复杂的磁有序行为, 在T1~250 K和T2~83 K两处存在磁转变. 对这一系列掺杂样品, 在相变温度T1之上表现顺磁行为, 而在相变温度T2前后的磁化强度都表现出低场下随磁场的增加快速增加, 高场下则线性变化且在5104 Oe时还未达到饱和的行为, 表明这一系列掺杂样品是典型的倾斜反铁磁态(canted antiferromagnetic) 或者亚铁磁态.
    In this paper, polycrystalline BaFe4-xTi2+xO11 (x=0, 0.25, 0.5, 0.75, 1) samples have been synthesized by the conventional solid-state reaction method. X-ray diffraction (XRD) patterns of all the samples show that the diffraction peaks correspond to that of an R-type hexagonal ferrite structure, and no trace of second phase is detected. Measurement of X-ray photoelectron spectroscopy (XPS) reveals that most of the Fe ions in BaFe4Ti2O11 are trivalent and the fitting of two peaks in Fe 2p spectrum corresponding to different Fe ion sites, while the amount of Fe2+ ions increases with the increase of Ti ions in BaFe4-xTi2+xO11. The spectroscopy of Ti ions confirms that the valence of Ti in BaFe4-xTi2+xO11 are tetravalent. Magnetic susceptibility of BaFe4-xTi2+xO11 (x= 0, 0.25, 0.5, 0.75, 1) reveals two magnetic transitions at T1~250 K and T2~83 K, which indicate a complex magnetic order driven by competing interactions on a frustrated lattice with a noncentrosymmetric structure. For all the samples, the magnetic susceptibility obeys Curie-Weiss law above T1, and M-H curves exhibit a linear variation with magnetic field in this temperature range, which is consistent with the paramagnetic behavior. A decrease of the effective magnetic moment is due to the increase of Fe2+ ions with the increase of Ti content in BaFe4-xTi2+xO11. Below T1, the magnetization curve as a function of temperature (M-T) and the magnetization versus magnetic field (M-H) at different temperatures imply its characteristic of a typical canted antiferromagnetic or ferrimagnetic state. Meanwhile, the transition temperature T2 drops gradually with the increase in Ti content, which might be related to the change of occupying of Fe ions in the kagome layers.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号:2012CB821404)、国家自然科学基金(批准号:11474224,11474225)和高等学校博士学科点专项科研基金(批准号:20110141110007)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB821404), the National Natural Science Foundation of China (Grant Nos. 11474224, 11474225), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110141110007).
    [1]

    Grundler D 2002 Grundler D 2002 Phys. World 15 39

    [2]

    Awschalom D D, Flatt M E, Samarth N 2002 Sci. Am. 286 66 Sci. Am. 286 66

    [3]

    Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323

    [4]

    Awschalom D D, Flatt M E 2007 Nat. Phys. 3 153

    [5]

    Tian Y F, Hu S J, Yan S S, Mei L M 2013 Chin. Phys. B. 22 088505

    [6]

    Zhang L G 1998 Progress in Physics 3 4 (in Chinese)[张立纲1998 物理学进展3 4]

    [7]

    Dietl T, Ollno H, Matsukura F, Cibert J, Ferrand D 2000Science 287 1019]

    [8]

    Furdyna J K 1988 J. Appl. Phys. 64 R29

    [9]

    Ohno H, Munekata H, Penney T, Molnr S, Chang L L 1992 Phys. Rev. Lett. 68 2664

    [10]

    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Appl. Phys. Lett. 69 363

    [11]

    Glen G L, Dodd C G 1968 J. Appl. Phys. 39 5372

    [12]

    Wu Z Y, Ouvrard G, Gressier P, Natoli C R 1997 Phys. Rev. B 55 10382

    [13]

    Zhao L, Lu P F, Yu Z Y, Ma S J, Ding L, Liu J T 2012 Chin. Phys. B 21 097103

    [14]

    Verdoes D, Zandbergen H W, Ijdo D J W 1987 Mater. Res. Bull. 22 1

    [15]

    Foo M L, Huang Q, Lynn J W, Lee W J, Klimczuk T, Hagemann I S, Ong N P, Cava R J 2006 J. Solid State Chem. 179 563

    [16]

    Shlyk L, Ueland B G, Lynn J W, Huang Q, De Long L E, Parkin S 2010 Phys. Rev. B 81 184415

    [17]

    Zhu P P 2010 Ms. D. Dissertation (Shenyang:Dongbei university) (in Chinese) [朱盼盼 2010 硕士学位论文 (沈阳:东北大学)]

    [18]

    Schpp-Niewa B, Shlyk L, Kryukov S, De Long L, Niewa R 2007 Naturforsch Z. Teil B. 62 753

    [19]

    Shlyk L, De Long L E, Kryukov S, Schpp-Niewa B, Niewa R 2008 J. Appl. Phys. 103 07D112

    [20]

    Shlyk L, Kryukov S, Schpp-Niewa B, Niewa R, De Long L E 2008 Adv. Mater. 20 1315

    [21]

    Obradors X, Collomb A, Pannetier J 1983 Mater. Res. Bull. 18 1543

    [22]

    Shlyk L, Parkin S, De Long L E 2010 J. Appl. Phys. 107 09E109

    [23]

    Yu T 2009 Ph. D. Dissertation (Tianjin:Tianjin university) (in Chinese) [于涛 2009 博士学位论文 (天津:天津大学)]

    [24]

    Prokes S M, Gole J L, Chen X 2006 Adv. Funct. Mater. 15 161

    [25]

    Prokes S M, Carlos W E, Gole J L 2003 Materials Research Society 738 239

  • [1]

    Grundler D 2002 Grundler D 2002 Phys. World 15 39

    [2]

    Awschalom D D, Flatt M E, Samarth N 2002 Sci. Am. 286 66 Sci. Am. 286 66

    [3]

    Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323

    [4]

    Awschalom D D, Flatt M E 2007 Nat. Phys. 3 153

    [5]

    Tian Y F, Hu S J, Yan S S, Mei L M 2013 Chin. Phys. B. 22 088505

    [6]

    Zhang L G 1998 Progress in Physics 3 4 (in Chinese)[张立纲1998 物理学进展3 4]

    [7]

    Dietl T, Ollno H, Matsukura F, Cibert J, Ferrand D 2000Science 287 1019]

    [8]

    Furdyna J K 1988 J. Appl. Phys. 64 R29

    [9]

    Ohno H, Munekata H, Penney T, Molnr S, Chang L L 1992 Phys. Rev. Lett. 68 2664

    [10]

    Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S, Iye Y 1996 Appl. Phys. Lett. 69 363

    [11]

    Glen G L, Dodd C G 1968 J. Appl. Phys. 39 5372

    [12]

    Wu Z Y, Ouvrard G, Gressier P, Natoli C R 1997 Phys. Rev. B 55 10382

    [13]

    Zhao L, Lu P F, Yu Z Y, Ma S J, Ding L, Liu J T 2012 Chin. Phys. B 21 097103

    [14]

    Verdoes D, Zandbergen H W, Ijdo D J W 1987 Mater. Res. Bull. 22 1

    [15]

    Foo M L, Huang Q, Lynn J W, Lee W J, Klimczuk T, Hagemann I S, Ong N P, Cava R J 2006 J. Solid State Chem. 179 563

    [16]

    Shlyk L, Ueland B G, Lynn J W, Huang Q, De Long L E, Parkin S 2010 Phys. Rev. B 81 184415

    [17]

    Zhu P P 2010 Ms. D. Dissertation (Shenyang:Dongbei university) (in Chinese) [朱盼盼 2010 硕士学位论文 (沈阳:东北大学)]

    [18]

    Schpp-Niewa B, Shlyk L, Kryukov S, De Long L, Niewa R 2007 Naturforsch Z. Teil B. 62 753

    [19]

    Shlyk L, De Long L E, Kryukov S, Schpp-Niewa B, Niewa R 2008 J. Appl. Phys. 103 07D112

    [20]

    Shlyk L, Kryukov S, Schpp-Niewa B, Niewa R, De Long L E 2008 Adv. Mater. 20 1315

    [21]

    Obradors X, Collomb A, Pannetier J 1983 Mater. Res. Bull. 18 1543

    [22]

    Shlyk L, Parkin S, De Long L E 2010 J. Appl. Phys. 107 09E109

    [23]

    Yu T 2009 Ph. D. Dissertation (Tianjin:Tianjin university) (in Chinese) [于涛 2009 博士学位论文 (天津:天津大学)]

    [24]

    Prokes S M, Gole J L, Chen X 2006 Adv. Funct. Mater. 15 161

    [25]

    Prokes S M, Carlos W E, Gole J L 2003 Materials Research Society 738 239

  • [1] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构. 物理学报, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] 熊政伟, 杨江, 王雨, 杨陆, 管弦, 曹林洪, 王进, 高志鹏. FeNiMo/SiO2复合粉芯的制备与软磁性能调控. 物理学报, 2022, 71(15): 157502. doi: 10.7498/aps.71.20212317
    [3] 杨蒙生, 易泰民, 郑凤成, 唐永建, 张林, 杜凯, 李宁, 赵利平, 柯博, 邢丕峰. 沉积态铀薄膜表面氧化的X射线光电子能谱. 物理学报, 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [4] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [5] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱. 物理学报, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [6] 侯育花, 黄有林, 刘仲武, 曾德长. 稀土掺杂对钴铁氧体电子结构和磁性能影响的理论研究. 物理学报, 2015, 64(3): 037501. doi: 10.7498/aps.64.037501
    [7] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [8] 李颉, 张怀武, 李元勋, 李强, 秦军锋. 稀土元素La掺杂BaFe12O19 微结构和磁性能的研究. 物理学报, 2012, 61(22): 227501. doi: 10.7498/aps.61.227501
    [9] 李姝丽, 张建民. Ni原子链填充碳纳米管的能量、电子结构和磁性的第一性原理计算. 物理学报, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [10] 易勇, 丁志杰, 李恺, 唐永建, 罗江山. Ni4NdB电子结构和磁性能第一性原理研究. 物理学报, 2011, 60(9): 097503. doi: 10.7498/aps.60.097503
    [11] 易勇, 李恺, 丁志杰, 易早, 罗江山, 唐永建. Ni4PrB的电子结构和磁性能研究. 物理学报, 2011, 60(10): 107502. doi: 10.7498/aps.60.107502
    [12] 韩录会, 张崇宏, 张丽卿, 杨义涛, 宋银, 孙友梅. 低速高电荷态重离子辐照的GaN晶体表面X射线光电子能谱研究. 物理学报, 2010, 59(7): 4584-4590. doi: 10.7498/aps.59.4584
    [13] 向军, 宋福展, 沈湘黔, 褚艳秋. 一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能. 物理学报, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [14] 李永华, 刘常升, 孟繁玲, 王煜明, 郑伟涛. NiTi合金薄膜厚度对相变温度影响的X射线光电子能谱分析. 物理学报, 2009, 58(4): 2742-2745. doi: 10.7498/aps.58.2742
    [15] 杨 白, 沈保根, 赵同云, 孙继荣. 纳米晶复合Pr2Fe14B/α-Fe快淬薄带的织构与磁性. 物理学报, 2007, 56(6): 3527-3532. doi: 10.7498/aps.56.3527
    [16] 李 健, 宋功保, 王美丽, 张宝述. Ti1-xCrxO2±δ体系的相关系、晶体结构和磁性能研究. 物理学报, 2007, 56(6): 3379-3387. doi: 10.7498/aps.56.3379
    [17] 欧谷平, 宋 珍, 桂文明, 张福甲. 原子力显微镜与x射线光电子能谱对LiBq4/ITO和LiBq4/CuPc/ITO的表面分析. 物理学报, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [18] 冯玉清, 赵 昆, 朱 涛, 詹文山. 磁性隧道结热稳定性的x射线光电子能谱研究. 物理学报, 2005, 54(11): 5372-5376. doi: 10.7498/aps.54.5372
    [19] 李刘合, 张海泉, 崔旭明, 张彦华, 夏立芳, 马欣新, 孙跃. X射线光电子能谱辅助Raman光谱分析类金刚石碳膜的结构细节. 物理学报, 2001, 50(8): 1549-1554. doi: 10.7498/aps.50.1549
    [20] 苑进社, 陈光德, 齐鸣, 李爱珍, 徐卓. 分子束外延GaN薄膜的X射线光电子能谱和俄歇电子能谱研究. 物理学报, 2001, 50(12): 2429-2433. doi: 10.7498/aps.50.2429
计量
  • 文章访问数:  4061
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-28
  • 修回日期:  2015-01-12
  • 刊出日期:  2015-06-05

/

返回文章
返回