搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子在激光驻波场中运动产生的太赫兹及X射线辐射研究

朱卫卫 张秋菊 张延惠 焦扬

引用本文:
Citation:

电子在激光驻波场中运动产生的太赫兹及X射线辐射研究

朱卫卫, 张秋菊, 张延惠, 焦扬

Motion-induced X-ray and terahertz radiation of electrons captured in laser standing wave

Zhu Wei-Wei, Zhang Qiu-Ju, Zhang Yan-Hui, Jiao Yang
PDF
导出引用
  • 采用单电子模型和经典辐射理论分别对低能和高能电子在线偏振激光驻波场中的运动和辐射过程进行了研究. 结果表明: 垂直于激光电场方向入射的低速电子在激光驻波场中随着光强的增大, 逐渐从一维近周期运动演变为二维折叠运动, 并产生强的微米量级波长的太赫兹辐射; 高能电子垂直或者平行于激光电场方向入射到激光驻波场中, 都会产生波长在几个纳米的高频辐射; 低能电子与激光驻波场作用中, 激光强度影响着电子的运动形式、辐射频率以及辐射强度; 高能电子入射时, 激光强度影响了电子高频辐射的强度, 电子初始能量影响着辐射的频率; 电子能量越高, 产生的辐射频率越大. 研究表明可以由激光加速电子的方式得到不同能量的电子束, 并利用电子束在激光驻波场的辐射使之成为太赫兹和X射线波段的小型辐射源. 研究结果可以为实验研究和利用激光驻波场中的电子辐射提供依据.
    The motions of charged particles in electromagnetic fields composed of two or more laser beams show a variety of forms due to the adjustable properties of electromagnetic fields. In this paper, we consider the periodic laser standing wave field composed of two laser beams with opposite propagating directions. The movement of electrons in the standing wave field shows a periodic behavior, accompanied with the obvious radiation, especially when electrons are captured by the laser standing wave field. This phenomenon has aroused much interest of us. Under the existing experimental conditions, the free electron beam with low energy from an electron gun or the relativistic electron beam generated from laser acceleration can be easily obtained and injected into the periodic standing wave field. In this paper, using the single-electron model and the classical radiation theory of charged particles, we study the motion and radiation processes of low and high energy electrons in the polarized laser standing wave field. The results show that when the direction of incident electrons with low-speed is perpendicular to the direction of the laser standing wave electric field, the one-dimensional nearly periodic motion of electrons evolves into a two-dimensional folded movement by gradually increasing the light intensity of the laser standing wave field, and the strong terahertz radiation at micrometer wavelength is produced. High energy electrons generate the high-frequency radiation with the wavelength at several nanometers when the incident direction of high energy electrons is perpendicular or parallel to the direction of the laser standing wave electric field. In the case of low-energy electron, the motion of electron, frequency and intensity of radiation are affected by the laser intensity. In the case of incident high-energy electrons, the laser intensity affects the intensity of electronic radiation, and the initial electron energy influences radiation frequency. The bigger the incident electrons energy, the higher the frequency of radiation is. #br#We can obtain electron beams with different energies by laser acceleration, and they can be promising small radiation sources for terahertz and X-ray by using the electron beam radiation in a laser standing wave field. These studies also provide a basis for experimental researches and the applications of electron radiation in a laser standing wave field.
    • 基金项目: 国家自然科学基金(批准号:11104168)和山东省自然科学基金(批准号:ZR2014AM030)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11104168) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM030).
    [1]

    Pogorelsky I V, Ben-Zvi I, Hirose T, Kashiwagi S, Yakimenkol V, Kuschel K, Siddonsl P, Skaritkal J, Kumita T, Tsunemi A, Omori T, Urakawa T, Washio M, Yokoya K, Okugi T, Liu Y, He P, Cline D 2000 Phys. Rev. ST Accel. Beams 3 090702

    [2]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevie N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [3]

    Tian Y W, Yu W, He F, Xu H, Senecha V, Deng D, Wang Y, Li R, Xu Z Z 2006 Phys. Plasmas 13 123106

    [4]

    Lee K, Cha Y H, Shin M S, Kim B H, Kim D 2003 Phys. Rev. E 67 026502

    [5]

    Yu W, Li B W, Yu M Y, He F, Ishiguro S, Horiuchi R 2005 Phys. Plasmas 12 103101

    [6]

    Tian Y W, Yu W, Lu P X, Senecha V, Cang Y, Xu H, Deng D G, Li R X, Xu Z Z 2006 Opt. Commun. 261 104

    [7]

    Wu H C, Meyer-ter-Vehn J, Fernández J, Hegelich B M 2010 Phys. Rev. Lett. 104 234801

    [8]

    Wu H C, Meyer-ter-Vehn J, Hegelich B M, Fernández J 2011 Phys. Rev. ST Accel. Beams 14 070702

    [9]

    Wu H C, Meyer-ter-Vehn J 2012 Nature 6 304

    [10]

    Zhang Q J, Yu W, Luan S X, Ma G J 2012 Chin. Phys. B 21 013403

    [11]

    He F, Yu W, Lu P X, Xu H, Qian L J, Shen B F, Yuan X, Li R X, Xu Z Z 2003 Phys. Rev. E 68 046407

    [12]

    Yan C Y, Zhang Q J, Luo M H 2011 Acta Phys. Sin. 60 035202 (in Chinese) [闫春燕, 张秋菊, 罗牧华 2011 物理学报 60 035202]

    [13]

    Bai Y L, Zhang Q J, Tian M, Cui C H 2013 Acta Phys. Sin. 62 125206 (in Chinese) [白易灵, 张秋菊, 田密, 崔春红 2013 物理学报 62 125206]

    [14]

    Paul G 1997 IEEE J. Quantum Electron. 33 1915

    [15]

    Jackson J D 1975 Classical Electrodynamics (New York: Wiley) p241

  • [1]

    Pogorelsky I V, Ben-Zvi I, Hirose T, Kashiwagi S, Yakimenkol V, Kuschel K, Siddonsl P, Skaritkal J, Kumita T, Tsunemi A, Omori T, Urakawa T, Washio M, Yokoya K, Okugi T, Liu Y, He P, Cline D 2000 Phys. Rev. ST Accel. Beams 3 090702

    [2]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevie N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [3]

    Tian Y W, Yu W, He F, Xu H, Senecha V, Deng D, Wang Y, Li R, Xu Z Z 2006 Phys. Plasmas 13 123106

    [4]

    Lee K, Cha Y H, Shin M S, Kim B H, Kim D 2003 Phys. Rev. E 67 026502

    [5]

    Yu W, Li B W, Yu M Y, He F, Ishiguro S, Horiuchi R 2005 Phys. Plasmas 12 103101

    [6]

    Tian Y W, Yu W, Lu P X, Senecha V, Cang Y, Xu H, Deng D G, Li R X, Xu Z Z 2006 Opt. Commun. 261 104

    [7]

    Wu H C, Meyer-ter-Vehn J, Fernández J, Hegelich B M 2010 Phys. Rev. Lett. 104 234801

    [8]

    Wu H C, Meyer-ter-Vehn J, Hegelich B M, Fernández J 2011 Phys. Rev. ST Accel. Beams 14 070702

    [9]

    Wu H C, Meyer-ter-Vehn J 2012 Nature 6 304

    [10]

    Zhang Q J, Yu W, Luan S X, Ma G J 2012 Chin. Phys. B 21 013403

    [11]

    He F, Yu W, Lu P X, Xu H, Qian L J, Shen B F, Yuan X, Li R X, Xu Z Z 2003 Phys. Rev. E 68 046407

    [12]

    Yan C Y, Zhang Q J, Luo M H 2011 Acta Phys. Sin. 60 035202 (in Chinese) [闫春燕, 张秋菊, 罗牧华 2011 物理学报 60 035202]

    [13]

    Bai Y L, Zhang Q J, Tian M, Cui C H 2013 Acta Phys. Sin. 62 125206 (in Chinese) [白易灵, 张秋菊, 田密, 崔春红 2013 物理学报 62 125206]

    [14]

    Paul G 1997 IEEE J. Quantum Electron. 33 1915

    [15]

    Jackson J D 1975 Classical Electrodynamics (New York: Wiley) p241

  • [1] 李翰楠, 彭滟. 激光脉冲啁啾影响双色激光场诱导气体产生太赫兹辐射特性的理论研究. 物理学报, 2024, 73(6): 060701. doi: 10.7498/aps.73.20231806
    [2] 魏高帅, 张慧, 吴晓君, 张洪瑞, 王春, 王博, 汪力, 孙继荣. 飞秒激光泵浦LaAlO3/SrTiO3异质结产生太赫兹波辐射. 物理学报, 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [3] 张帆, 许涌, 柳洋, 程厚义, 张晓强, 杜寅昌, 吴晓君, 赵巍胜. 磁控溅射法生长Bi2Te3/CoFeB双层异质结太赫兹发射. 物理学报, 2020, 69(20): 200705. doi: 10.7498/aps.69.20200634
    [4] 李晓璐, 白亚, 刘鹏. 激光等离子体光丝中太赫兹频谱的调控. 物理学报, 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [5] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨. Y3Fe5O12(YIG)/Pt异质结构中基于超快自旋塞贝克效应产生太赫兹相干辐射研究. 物理学报, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [6] 王伟民, 张亮亮, 李玉同, 盛政明, 张杰. 激光在大气中驱动的强太赫兹辐射的理论和实验研究. 物理学报, 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [7] 李书磊, 刘磊, 高太长, 黄威, 胡帅. 太赫兹波被动遥感卷云微物理参数的敏感性试验分析. 物理学报, 2016, 65(13): 134102. doi: 10.7498/aps.65.134102
    [8] 张文涛, 朱保华, 汪杰君, 熊显名, 黄雅琴. 沟道效应作用下中性原子在激光驻波场中的沉积特性研究. 物理学报, 2013, 62(24): 243201. doi: 10.7498/aps.62.243201
    [9] 王建波, 钱进, 殷聪, 石春英, 雷鸣. 原子光刻中驻波场与基片距离的判定方法研究. 物理学报, 2012, 61(19): 190601. doi: 10.7498/aps.61.190601
    [10] 张铠云, 杜海伟, 陈民, 盛政明. 基于光场离化电流机制产生强太赫兹辐射的参数优化研究. 物理学报, 2012, 61(16): 160701. doi: 10.7498/aps.61.160701
    [11] 祁春超, 欧阳征标. 基于600—2000 nm抽运源的太赫兹相干光源的最新进展. 物理学报, 2011, 60(9): 090704. doi: 10.7498/aps.60.090704
    [12] 张文涛, 朱保华, 熊显名, 黄静. 原子运动速度对激光驻波场作用下纳米光栅沉积特性的影响. 物理学报, 2011, 60(6): 063202. doi: 10.7498/aps.60.063202
    [13] 张文涛, 朱保华, 熊显名. 中性钠原子在激光驻波场中的运动特性研究. 物理学报, 2011, 60(3): 033201. doi: 10.7498/aps.60.033201
    [14] 钟凯, 姚建铨, 徐德刚, 张会云, 王鹏. 级联差频产生太赫兹辐射的理论研究. 物理学报, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [15] 黄楠, 李雪峰, 刘红军, 夏彩鹏. 增益饱和对光学差频产生太赫兹辐射的功率和稳定性的影响. 物理学报, 2009, 58(12): 8326-8331. doi: 10.7498/aps.58.8326
    [16] 邓玉强, 郎利影, 邢岐荣, 曹士英, 于 靖, 徐 涛, 李 健, 熊利民, 王清月, 张志刚. Gabor小波分析太赫兹波时间-频率特性的研究. 物理学报, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
    [17] 谭开洲, 胡刚毅, 杨谟华, 徐世六, 张正璠, 刘玉奎, 何开全, 钟 怡. 一种N沟VDMOS电离辐射界面陷阱电流传导性研究. 物理学报, 2008, 57(3): 1872-1877. doi: 10.7498/aps.57.1872
    [18] 马 彬, 马 艳, 赵 敏, 马姗姗, 王占山. 激光驻波场中钠原子沉积图样的理论研究. 物理学报, 2006, 55(2): 667-672. doi: 10.7498/aps.55.667
    [19] 郑春兰, 李同保, 马 艳, 马珊珊, 张宝武. 激光驻波场中Cr原子运动轨迹与汇聚沉积的分析. 物理学报, 2006, 55(9): 4528-4534. doi: 10.7498/aps.55.4528
    [20] 王 薇, 张 杰, 赵 刚. 吸积盘的X射线辐射对周围星际物质的离化研究. 物理学报, 2006, 55(1): 287-293. doi: 10.7498/aps.55.287
计量
  • 文章访问数:  4921
  • PDF下载量:  357
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-04
  • 修回日期:  2014-12-16
  • 刊出日期:  2015-06-05

/

返回文章
返回