搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金和银的晶格反演势的构建及应用

任县利 陈松 谢明 李慕阳 胡洁琼 杨云峰 杨唯一

引用本文:
Citation:

金和银的晶格反演势的构建及应用

任县利, 陈松, 谢明, 李慕阳, 胡洁琼, 杨云峰, 杨唯一

Application and foundation on inversion lattice potential of gold and silver

Ren Xian-Li, Chen Song, Xie Ming, Li Mu-Yang, Hu Jie-Qiong, Yang Yun-Feng, Yang Wei-Yi
PDF
导出引用
  • 如何确定精确的原子间作用势一直是模拟计算的重要基础问题. 以面心立方金属金和银为对象, 采用第一性原理方法, 分别得到金和银的晶格内聚能-原子距离曲线及基态原子能曲线. 根据陈-莫比乌斯(Chen-Möbius)晶格反演理论和自编程序, 得到了精确的反演对势曲线. 对该曲线进行拟合, 通过比较不同势函数的拟合结果, 提出了双指数型的势函数解析式, 并得到具有全局性且高精度的拟合效果. 为了验证反演势的有效性, 利用反演势结果计算了金和银的声子谱并与Sutton-Chen提出的嵌入原子势和第一性原理计算得到的声子谱做比较. 分析表明, 反演势能够合理反映原子间的相互作用. 最后, 利用得到的结果, 计算了金和银的热膨胀系数和弹性模量等物理量, 计算结果与实验数据基本符合, 表明构建的金和银的反演势是准确有效的.
    How to construct an accurate interatomic potential function is an important and basic problem in the simulation procedure. Using first-principles method, the single atom energies in different lattice constants are calculated to achieve the ground state curves of Au and Ag. These energies are calculated in the Perdew and Zunger form of the local-density approximation ultra-soft pseudo potentials. The cut-off energies of the plane wave bases of Au and Ag are set to be 320 eV and 300 eV respectively, which are sufficient for their full converge. The Brillouin zone is all sampled with a 12×12×12 Monkhorst-Pack mesh of k points for Au and Ag. Allowable error in total energy is smaller than 1×10-6 eV per atom. The lattice cohesive energies in different lattice constants are calculated to achieve the lattice energy and atom distance curves after subtracting the value of ground state energy from each of these energy. Then the accurate inversion potential curves are obtained according to the Chen-Möbius inversion theory and self-compiled program. Based on the fitting consequences of inversion potential curves, using different potential function formulas, a double exponential potential function to fit the inversion potential is presented. This function provides the accurate formulas and parameters for the following research. Moreover, the phonon spectra and the densities of states of Au and Ag are calculated respectively by using the inversion potential data, the embedded atom method (EAM) potential theory and first principles method to verify the reliability of the inversion potential. The comparison of the results among the three methods shows that the tendencies of these curves are similar. But they still have some deviations especially in the range of high frequency. However these curves indicate that the inversion potential can reasonably reflect the interaction between atoms. Meanwhile, the inversion potential method has great advantage in calculation quantity compared with the EAM potential method. The inversion method needs less time in calculation. In addition, the thermal expansion coefficients, the elastic moduli and the Grüneisen constants of Au and Ag are also calculated based on the fitting formulas and parameters. The results agree well with the experimental data, which implies that these inversion potentials are effective and accurate.
    • 基金项目: 国家自然科学基金(批准号: 51267007, 51461023, 51164015, U1302272)、云南省创新团队(批准号: 2012HC027)和云南省自然科学基金(批准号: 2010CD126, 2012FB195)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51267007, 51461023, 51164015, U1302272), the Innovation Team of Yunnan Province, China (Grant No. 2012HC027), and the Natural Science Foundation of Yunnan Province, China (Grant Nos. 2010CD126, 2012FB195).
    [1]

    Gong Y L, Wen C E, Li Y C, Wu X X, Cheng L P, Han X C, Zhu X K 2013 Mater. Sci. Engineer. A 569 144

    [2]

    Gong Y L, Wen C E, Wu X X, Ren S Y, Cheng L P, Zhu X K 2013 Mater. Sci. Engineer. A 583 199

    [3]

    Xu M L 2014 Rare Met. 33 65

    [4]

    Yu J, Chen J C, Hong Z J,Feng J 2011 Acta Mater. Compos. Sin. 28 150

    [5]

    Xia L, Chen S, Lu J S 2013 Precious Metals 34 82

    [6]

    Chen N X 2012 Möbius Inversion in Physics (Singapore: World Scientific Publishing Co. Pte. Ltd)

    [7]

    Flahive P G, Graham W R 1980 Surf. Sci. 91 449

    [8]

    Xia L, Lu J S, Chen S 2014 Precious Metals. 35 31

    [9]

    Zhang J X, Wu X J, Huang Y H, Xu K W 2006 Acta Phys. Sin. 55 393 (in Chinese) [张建新, 吴喜军, 黄育红, 徐可为 2006 物理学报 55 393]

    [10]

    Brandes E A, Brook G B 1992 Smithells Metals Reference Book (Seventh Edition) (Oxford: Reed Educational and Publishing Ltd.)

    [11]

    Liu C, Zhou T, Zheng R L 2006 J. Southwest China Normal Univ. (Natural Science) 31 83

    [12]

    Wan S M 1987 Sci. Sin. A 2 170

    [13]

    Hu J Q, Xie M, Zhang J M, Liu M M, Yang Y C, Chen Y T 2013 Acta Phys. Sin. 62 247102 (in Chinese) [胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰 2013 物理学报 62 247102]

    [14]

    Xia L 2013 M. S. Dissertation (Kunming: Kunming University of Science and Technology) (in Chinese) [夏璐 2013 硕士学位论文(昆明: 昆明理工大学)]

    [15]

    Johnson R A 1989 Phys. Rev. B 39 12554

    [16]

    Prodan I D, Scuseria G E, Martin R L 2006 Phys. Rev. B 73 45106

    [17]

    Chen S, Liu Z G, Chen D Q, Luo X M, Xu K, Deng D G 2005 Chinese Journal of Rare Metals 29 413

    [18]

    Jia Y F, Shu X L, Xie Y, Chen Z Y 2014 Chin. Phys. B 23 076105

    [19]

    Liu Y, Ling P, Shu H B, Cao D, Dong Q M, Wang L 2014 Chin. Phys. B 23 067304

  • [1]

    Gong Y L, Wen C E, Li Y C, Wu X X, Cheng L P, Han X C, Zhu X K 2013 Mater. Sci. Engineer. A 569 144

    [2]

    Gong Y L, Wen C E, Wu X X, Ren S Y, Cheng L P, Zhu X K 2013 Mater. Sci. Engineer. A 583 199

    [3]

    Xu M L 2014 Rare Met. 33 65

    [4]

    Yu J, Chen J C, Hong Z J,Feng J 2011 Acta Mater. Compos. Sin. 28 150

    [5]

    Xia L, Chen S, Lu J S 2013 Precious Metals 34 82

    [6]

    Chen N X 2012 Möbius Inversion in Physics (Singapore: World Scientific Publishing Co. Pte. Ltd)

    [7]

    Flahive P G, Graham W R 1980 Surf. Sci. 91 449

    [8]

    Xia L, Lu J S, Chen S 2014 Precious Metals. 35 31

    [9]

    Zhang J X, Wu X J, Huang Y H, Xu K W 2006 Acta Phys. Sin. 55 393 (in Chinese) [张建新, 吴喜军, 黄育红, 徐可为 2006 物理学报 55 393]

    [10]

    Brandes E A, Brook G B 1992 Smithells Metals Reference Book (Seventh Edition) (Oxford: Reed Educational and Publishing Ltd.)

    [11]

    Liu C, Zhou T, Zheng R L 2006 J. Southwest China Normal Univ. (Natural Science) 31 83

    [12]

    Wan S M 1987 Sci. Sin. A 2 170

    [13]

    Hu J Q, Xie M, Zhang J M, Liu M M, Yang Y C, Chen Y T 2013 Acta Phys. Sin. 62 247102 (in Chinese) [胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰 2013 物理学报 62 247102]

    [14]

    Xia L 2013 M. S. Dissertation (Kunming: Kunming University of Science and Technology) (in Chinese) [夏璐 2013 硕士学位论文(昆明: 昆明理工大学)]

    [15]

    Johnson R A 1989 Phys. Rev. B 39 12554

    [16]

    Prodan I D, Scuseria G E, Martin R L 2006 Phys. Rev. B 73 45106

    [17]

    Chen S, Liu Z G, Chen D Q, Luo X M, Xu K, Deng D G 2005 Chinese Journal of Rare Metals 29 413

    [18]

    Jia Y F, Shu X L, Xie Y, Chen Z Y 2014 Chin. Phys. B 23 076105

    [19]

    Liu Y, Ling P, Shu H B, Cao D, Dong Q M, Wang L 2014 Chin. Phys. B 23 067304

  • [1] 熊磊, 丁洪伟, 李光元. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体模式. 物理学报, 2022, 71(4): 047802. doi: 10.7498/aps.71.20211629
    [2] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211629
    [3] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能. 物理学报, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [4] 王建国, 杨松林, 叶永红. 样品表面银膜的粗糙度对钛酸钡微球成像性能的影响. 物理学报, 2018, 67(21): 214209. doi: 10.7498/aps.67.20180823
    [5] 史娜娜, 赵艳, 冯超, 黄杰, 徐佳宇. 光辐照精确调控金纳米星枝杈长度及其光热性能探究. 物理学报, 2017, 66(8): 086101. doi: 10.7498/aps.66.086101
    [6] 刘丽双, 丑修建, 陈涛, 孙立宁. 银纳米颗粒对纳米金刚石的拉曼及荧光增强特性研究. 物理学报, 2016, 65(19): 197301. doi: 10.7498/aps.65.197301
    [7] 王青如, 李淑红, 史强, 王文军. 金/银纳米颗粒对Eu掺杂薄膜发光特性影响的研究. 物理学报, 2014, 63(5): 057802. doi: 10.7498/aps.63.057802
    [8] 杨振岭, 刘玉强, 杨延强. 银纳米颗粒对四苯基卟啉Q带荧光寿命的延长. 物理学报, 2012, 61(3): 037805. doi: 10.7498/aps.61.037805
    [9] 陈怡, 申江. NaZn13型Fe基化合物的结构和热力学性质研究. 物理学报, 2009, 58(13): 141-S145. doi: 10.7498/aps.58.141
    [10] 章盛林, 谢建平, 方轶君, 金进生, 叶高翔. 液相基底温度对沉积银原子及其团簇凝聚过程的影响. 物理学报, 2007, 56(9): 5452-5457. doi: 10.7498/aps.56.5452
    [11] 许北雪, 吴锦雷, 侯士敏, 张西尧, 刘惟敏, 薛增泉, 吴全德. 镧与真空沉积银纳米粒子的金属间化合. 物理学报, 2002, 51(7): 1649-1653. doi: 10.7498/aps.51.1649
    [12] 杨国洪, 张继彦, 张保汉, 周裕清, 李 军. 金激光等离子体X射线精细结构谱研究. 物理学报, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
    [13] 潘正瑛, 李融武. 用多体势模拟金原子簇与金薄膜的相互作用(Ⅰ)──金原子簇轰击引起的表面损伤. 物理学报, 1996, 45(1): 161-168. doi: 10.7498/aps.45.161
    [14] 苗润才, 潘多海, 陈发堂, 张新惠. 卤族离子对银表面-分子系统中的表面增强Raman光谱信号的影响. 物理学报, 1992, 41(9): 1542-1546. doi: 10.7498/aps.41.1542
    [15] 傅石友, 张鹏翔, 李秀英. 氯离子对银胶中表面增强喇曼散射效应的影响. 物理学报, 1991, 40(12): 1915-1921. doi: 10.7498/aps.40.1915
    [16] 方炎, 王卫宁, 倪东海, 傅石友, 张鹏翔. KCI对银胶形态影响的电子显微镜研究. 物理学报, 1990, 39(1): 46-50. doi: 10.7498/aps.39.46
    [17] 王卫宁, 方炎, 傅石友, 张鹏翔. 添加KCl对银胶光吸收的影响. 物理学报, 1990, 39(2): 177-182. doi: 10.7498/aps.39.177
    [18] 于风崎;蓝国祥;张春平;李兵;张光寅. 金属离子对银溶胶的聚集作用及其喇曼光谱. 物理学报, 1989, 38(8): 1259-1264. doi: 10.7498/aps.38.1259
    [19] 于风崎, 张春平, 张光寅. 金属离子对银溶胶的聚集作用及形成的分数维结构. 物理学报, 1987, 36(10): 1289-1304. doi: 10.7498/aps.36.1289
    [20] 唐璞山. 银对氧化亚铜电学性质的影响. 物理学报, 1958, 14(5): 423-427. doi: 10.7498/aps.14.423
计量
  • 文章访问数:  4519
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-23
  • 修回日期:  2015-03-11
  • 刊出日期:  2015-07-05

/

返回文章
返回