搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光梯度力驱动的纳米硅基光开关

林建潇 吴九汇 刘爱群 陈喆 雷浩

引用本文:
Citation:

光梯度力驱动的纳米硅基光开关

林建潇, 吴九汇, 刘爱群, 陈喆, 雷浩

A nano-silicon-photonic switch driven by an optical gradient force

Lin Jian-Xiao, Wu Jiu-Hui, Liu Ai-Qun, Chen Zhe, Lei Hao
PDF
导出引用
  • 通过一道光改变另一道光的传输路线是光子集成网络中重要而长远的目标, 然而, 由于硅材料的光学非线性较弱, 在硅材料上实现开关的全光控制难以实现. 因此本文提出了一种由光梯度力驱动的纳米硅基光开关, 实现了硅基光开关的全光控制. 该光开关由一个部分悬空的微环谐振器和一个交叉波导结构构成, 当通入一道控制光时, 悬空的微环谐振器在光梯度力的作用下发生弯曲, 微环谐振器的谐振波长随之发生变化, 从而实现光信号的传输路线发生改变. 该光开关利用纳米光子制造技术在标准绝缘体上硅晶圆上制造, 实验数据得出其最小消光比为10.67 dB, 最大串扰为 -11.01 dB, 开关时间分别为180 ns和170 ns. 该光开关具有尺寸小, 响应速度快, 低损耗和可拓展等优点, 在片上集成光路、高速信号处理以及下一代光纤通信网络中具有潜在应用.
    Using light to dynamically and stably redirect the flow of another beam of light is a long-term goal for photonic-integrated circuits. However, it is challenging to realize a practically all-optical switching device in silicon owing to its weak optical nonlinearity. Major published work on all-optical switches were using single-photon absorption and two-photon absorption, which requires ultrahigh switching energy. This paper presents a nano-silicon-photonic all-optical switch driven by an optical gradient force, in which a fast switching speed with low power consumption is obtained. Each switching element is composed of a waveguide crossing connection and a micro-ring resonator. The ring resonator is side-coupled to a double-etched waveguide crossing, while the micro-ring resonator is partially released from the substrate and becomes free-standing. When the “drop” port is in “OFF” state, the wavelength of the signal light from the “input” port does not satisfy the resonant condition in the micro-ring. Therefore, light is mainly transmitted to the "thru" port without control light. When a control light is loaded to the “add” port, of which the wavelength satisfies the resonance condition in the micro-ring, a strong optical gradient force is generated by the induced evanescent optical field. The freestanding arc of the ring is then bent down to the substrate, leading to a cavity resonance wavelength shift. As a result, the signal light is diverted to the “drop” port and the corresponding transmission state is switched to the “ON” state. The optical switch is fabricated by nano-photonic fabrication processes using standard silicon-on-insulator (SOI) wafer. The waveguide structures have a width of 450 nm and a height of 220 nm for a single mode transmission; the outer radius of the ring in the switching element is 15 μm; the coupling gap between the ring and the nano-waveguide is 200 nm; the system is fabricated through two-step lithography and plasma dry etching processes while the free-standing arc is released by undercutting the buried oxide layer. #br#A switching time of 180 ns(rise) and 170 ns (fall) is experimentally demonstrated, which is much faster than that of conventional optical switches. The present optical switch can reach a high extinction ratio (10.67 dB) and a low crosstalk (-11.01 dB). In addition, the proposed switch has the advantages of compact size and low power consumption. Potential applications of this optical switch include photonic integrated circuits, signal processing, and high speed optical communication networks.
    • 基金项目: 长江学者和创新团队发展计划资助(批准号: IRT1172)资助的课题.
    • Funds: Project supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1172).
    [1]

    SahaE S, Manley D, Deogun J S 2009 IEEE 3rd Int. Symposium on Advanced Networks and Telecom. Syst. (ANTS) 1 1

    [2]

    Wu M C, Solgaard O, Ford J E 2006 J. Lightwave Technol. 24 4433

    [3]

    Zhu W M, Zhong T, Liu A Q, Zhang X M, Yu M 2007 Appl. Phys. Lett. 91 261106

    [4]

    Fang Q, Song J F, Liow T Y, Cai H, Yu B M, Lo G Q, Kwong D L 2011 IEEE Photon. Technol. Lett. 23 525

    [5]

    Dong P, Liao S, Liang H, Qian W, Wang X, Shafiiha R, Feng D, Li G, Zheng Z, A Krishnamoorthy V, Asghari M 2010 Opt. Lett. 35 3246

    [6]

    Didosyan Y, Hauser H, Reider A G 2002 IEEE Trans. Magn. 38 3243

    [7]

    Lin L Y, Goldstein E L, Tkach R W 1998 IEEE Photon. Technol. Lett. 10 525

    [8]

    Teo S H G, Liu A Q, Zhang J B, Hong M H, Singh J, Yu M B, Singh N, Lo G Q 2008 Opt. Express 16 7842

    [9]

    Tanabe T, Notomi M, Shinya A, Mitsugi S, Kuramochi E 2005 Appl. Phys. Lett. 87 151112

    [10]

    Espinola R L, Tsai M C, Yardley J T, Osgood R M Jr. 2003 IEEE Photon. Technol. Lett. 15 1366

    [11]

    Almeida, Vilson R, Barrios, Carlos A, Panepucci, Roberto R, Lipson, Michal 2004 Nature 431 1081

    [12]

    Dong P, Preble SF, Lipson M 2007 Opt. Express 15 9600

    [13]

    Först M1, Niehusmann J, Plötzing T, Bolten J, Wahlbrink T, Moormann C, Kurz H 2007 Opt Lett. 32 2046

    [14]

    Waldow M, Plötzing T, Gottheil M, Först M, Bolten J, Wahlbrink T, Kurz H 2008 Opt. Express 16 7693

    [15]

    Wen Y H, Kuzucu O, Hou T, Lipson M, Gaeta A L 2011 Opt Lett. 36 1413

    [16]

    Thourhout D V, Roels J 2010 Nat. Photonics. 4 211

    [17]

    Weis S, Rivie’re R, Del_eglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520

    [18]

    Li M, Pernice W H P, Tang H X 2009 Phys. Rev. Lett. 103 223901

    [19]

    Lee B G, Biberman A, Sherwood N-Droz, Poitras C B, Lipson M, Bergman K 2009 Lightwave J Technol. 27 2900

    [20]

    Yu Y F, Zhang J B, Bourouina T, Liu A Q 2012 Appl. Phys. Lett. 100 093108

    [21]

    Cai H, Dong B, Tao J F, Ding L, Tsai J M, Lo G Q, Liu A Q, Kwong D L 2013 Appl. Phys. Lett. 102 023103

    [22]

    Little B E, Chu S T, Haus H A, Foresi J, Laine J P 1997 Lightwave J Technol 15 988

    [23]

    Wiederhecker G S, Chen L, Gondarenko A, Lipson M 2009 Nature 462 633

  • [1]

    SahaE S, Manley D, Deogun J S 2009 IEEE 3rd Int. Symposium on Advanced Networks and Telecom. Syst. (ANTS) 1 1

    [2]

    Wu M C, Solgaard O, Ford J E 2006 J. Lightwave Technol. 24 4433

    [3]

    Zhu W M, Zhong T, Liu A Q, Zhang X M, Yu M 2007 Appl. Phys. Lett. 91 261106

    [4]

    Fang Q, Song J F, Liow T Y, Cai H, Yu B M, Lo G Q, Kwong D L 2011 IEEE Photon. Technol. Lett. 23 525

    [5]

    Dong P, Liao S, Liang H, Qian W, Wang X, Shafiiha R, Feng D, Li G, Zheng Z, A Krishnamoorthy V, Asghari M 2010 Opt. Lett. 35 3246

    [6]

    Didosyan Y, Hauser H, Reider A G 2002 IEEE Trans. Magn. 38 3243

    [7]

    Lin L Y, Goldstein E L, Tkach R W 1998 IEEE Photon. Technol. Lett. 10 525

    [8]

    Teo S H G, Liu A Q, Zhang J B, Hong M H, Singh J, Yu M B, Singh N, Lo G Q 2008 Opt. Express 16 7842

    [9]

    Tanabe T, Notomi M, Shinya A, Mitsugi S, Kuramochi E 2005 Appl. Phys. Lett. 87 151112

    [10]

    Espinola R L, Tsai M C, Yardley J T, Osgood R M Jr. 2003 IEEE Photon. Technol. Lett. 15 1366

    [11]

    Almeida, Vilson R, Barrios, Carlos A, Panepucci, Roberto R, Lipson, Michal 2004 Nature 431 1081

    [12]

    Dong P, Preble SF, Lipson M 2007 Opt. Express 15 9600

    [13]

    Först M1, Niehusmann J, Plötzing T, Bolten J, Wahlbrink T, Moormann C, Kurz H 2007 Opt Lett. 32 2046

    [14]

    Waldow M, Plötzing T, Gottheil M, Först M, Bolten J, Wahlbrink T, Kurz H 2008 Opt. Express 16 7693

    [15]

    Wen Y H, Kuzucu O, Hou T, Lipson M, Gaeta A L 2011 Opt Lett. 36 1413

    [16]

    Thourhout D V, Roels J 2010 Nat. Photonics. 4 211

    [17]

    Weis S, Rivie’re R, Del_eglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520

    [18]

    Li M, Pernice W H P, Tang H X 2009 Phys. Rev. Lett. 103 223901

    [19]

    Lee B G, Biberman A, Sherwood N-Droz, Poitras C B, Lipson M, Bergman K 2009 Lightwave J Technol. 27 2900

    [20]

    Yu Y F, Zhang J B, Bourouina T, Liu A Q 2012 Appl. Phys. Lett. 100 093108

    [21]

    Cai H, Dong B, Tao J F, Ding L, Tsai J M, Lo G Q, Liu A Q, Kwong D L 2013 Appl. Phys. Lett. 102 023103

    [22]

    Little B E, Chu S T, Haus H A, Foresi J, Laine J P 1997 Lightwave J Technol 15 988

    [23]

    Wiederhecker G S, Chen L, Gondarenko A, Lipson M 2009 Nature 462 633

  • [1] 陆梦佳, 恽斌峰. 基于硅基砖砌型亚波长光栅的紧凑型模式转换器. 物理学报, 2023, 72(16): 164203. doi: 10.7498/aps.72.20230673
    [2] 汪静丽, 张见哲, 陈鹤鸣. 基于亚波长光栅和三明治结构的偏振无关微环谐振器的设计与仿真. 物理学报, 2021, 70(12): 124201. doi: 10.7498/aps.70.20201965
    [3] 涂鑫, 陈震旻, 付红岩. 硅基光波导开关技术综述. 物理学报, 2019, 68(10): 104210. doi: 10.7498/aps.68.20190011
    [4] 王硕, 常永伟, 陈静, 王本艳, 何伟伟, 葛浩. 新型绝缘体上硅静态随机存储器单元总剂量效应. 物理学报, 2019, 68(16): 168501. doi: 10.7498/aps.68.20190405
    [5] 李志全, 白兰迪, 顾而丹, 谢锐杰, 刘同磊, 牛力勇, 冯丹丹, 岳中. 一种基于金刚石多层波导结构微环谐振器的仿真分析. 物理学报, 2017, 66(20): 204203. doi: 10.7498/aps.66.204203
    [6] 秦晨, 余辉, 叶乔波, 卫欢, 江晓清. 基于绝缘体上硅的一种改进的Mach-Zehnder声光调制器. 物理学报, 2016, 65(1): 014304. doi: 10.7498/aps.65.014304
    [7] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [8] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构. 物理学报, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [9] 张鑫, 李志全, 童凯. 一种带有U形波导的交叉信道单微环电光开关. 物理学报, 2014, 63(9): 094207. doi: 10.7498/aps.63.094207
    [10] 刘岩, 张文明, 仲作阳, 彭志科, 孟光. 光梯度力驱动纳谐振器的非线性动力学特性研究. 物理学报, 2014, 63(2): 026201. doi: 10.7498/aps.63.026201
    [11] 张利斌, 陈少武, 费永浩, 曹彤彤, 曹严梅, 雷勋. 光波导微环谐振器用于二进制格式变换研究. 物理学报, 2013, 62(19): 194201. doi: 10.7498/aps.62.194201
    [12] 齐新元, 曹政, 白晋涛. 基于一维间距调制型光子晶格的光传输现象. 物理学报, 2013, 62(6): 064217. doi: 10.7498/aps.62.064217
    [13] 杨彪, 李智勇, 肖希, Nemkova Anastasia, 余金中, 俞育德. 硅基光栅耦合器的研究进展. 物理学报, 2013, 62(18): 184214. doi: 10.7498/aps.62.184214
    [14] 吴芳芳, 沈义峰, 王永春, 韩奎, 周杰, 张园, 陈琼. 一种紧凑的、可调的、基于缺陷共振的光开关. 物理学报, 2011, 60(1): 017801. doi: 10.7498/aps.60.017801
    [15] 周骏, 任海东, 冯亚萍. 强非局域光晶格中空间孤子的脉动传播. 物理学报, 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [16] 徐大伟, 梁中翥, 梁静秋, 李伟, 李小奇, 孙智丹, 王维彪. 柔性悬臂电磁驱动光开关的仿真与制作. 物理学报, 2010, 59(4): 2479-2484. doi: 10.7498/aps.59.2479
    [17] 秦晓娟, 邵毅全, 郭 旗. 空间相位调制对强非局域空间光孤子的影响. 物理学报, 2007, 56(9): 5269-5275. doi: 10.7498/aps.56.5269
    [18] 缪庆元, 黄德修, 张新亮, 余永林, 洪 伟. 集成双波导半导体光放大器光开关实现波长转换的理论研究. 物理学报, 2007, 56(2): 902-907. doi: 10.7498/aps.56.902
    [19] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 周期性极化铌酸锂波导全光开关特性分析. 物理学报, 2002, 51(7): 1521-1529. doi: 10.7498/aps.51.1521
    [20] 俞重远, 张晓光, 刘秀敏. 三芯非线性光纤耦合器中的短脉冲光开关. 物理学报, 2001, 50(5): 904-909. doi: 10.7498/aps.50.904
计量
  • 文章访问数:  4647
  • PDF下载量:  215
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-16
  • 修回日期:  2015-02-03
  • 刊出日期:  2015-08-05

/

返回文章
返回