搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究

闫昕 梁兰菊 张雅婷 丁欣 姚建铨

引用本文:
Citation:

基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究

闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨

A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies

Yan Xin, Liang Lan-Ju, Zhang Ya-Ting, Ding Xin, Yao Jian-Quan
PDF
导出引用
  • 本文设计了一种柔性, 非定向低散射的1bit编码超表面, 实现了太赫兹宽频带雷达散射截面的缩减. 这种设计基于对“0”和“1”两种基本单元进行编码, 其反射相位差在很宽的频段范围内接近180°, 为一种非周期的排列方式, 该电磁超表面使入射的电磁波发生漫反射, 从而实现雷达散射截面的缩减. 全波仿真结果表明, 在垂直入射条件下, 编码超表面的镜像反射率低于-10 dB的带宽频段范围为1.0-1.4 THz, 该带宽内超表面相对同尺寸金属板可将雷达散射截面所减量达到10 dB以上, 最大缩减量达到19 dB. 把柔性编码表面弯曲在直径为4 mm的金属圆柱面上, 雷达散射截面的所减量高于10 dB以上的带宽频段范围为0.9-1.2 THz, 仍然可实现宽频带缩减特性. 总之, 编码超表面为调控太赫兹波提供一种新的途径, 将在雷达隐身、成像、宽带通信等方面具有重要的意义.
    In this paper, we propose a flexible, non-directional lowering scattering 1 bit coding metasurface which can significantly reduce the radar cross section (RCS) within an ultra wide terahertz (THz) frequency band. The total thickness of the coding metasurface is only 40.4 μm. The 1 bit coding metasurface is composed of “0” and “1” elements. And the “0” and “1” elements of metasurface are realized separately by a substrate without any metallic covering and that with a square metallic ring covering, the reflection phase difference of the two elements is about 180 degree in a wide THz frequency range. The theoretical, analytical, and simulation results show that the coding metasurfaces simply manipulate electromagnetic waves by coding the “0” and “1” elements in different sequences. Specific coding sequences result in the far-field scattering patterns varying from single beam to two, three, and numerous beams in THz frequencies. The metasurface with the numerous scattering waves can disperse the reflection into a variety of directions for non-periodic coding sequence way, and in each direction the energy is small based on the energy conservation principle. Full-wave simulation results show that the reflectivity less than -10 dB for coding metasurface can be achieved in a wide frequency range from 1-1.4 THz at normal incidence, and the RCS reduction as compared with a bare metallic plate with the same size is essentially more than 10 dB, in agreement with the bandwidth of reflectivity being less than -10 dB; the maximum reduction can be up to 19 dB. The wideband RCS reduction results are consistent with the bandwidth of 180 degrees phase difference between the two elements “0” and “1”. This wideband characteristic of RCS reduction can be kept up as the coding metasurface is wrapped around a metallic cylinder with a diameter of 4 mm. The presented method opens a new way to control THz waves by coding metasurface, so it is of great application values in stealth, imaging, and broadband communications of THz frequencies.
    • 基金项目: 国家自然科学基金(批准号: 61271066)、山东省科技发展计划项目(批准号: 2013GGA04021)、中国博士后科学基金 (批准号: 2015M571263)、山东省高等学校科技计划项目和(批准号: J15LN36)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271066), the Science and Technology development Program of Shandong Province (Grant No. J13LN07), the China Postdoctoral Science Foundation (Grant No. 2015M571263), and the high Education Science Technology Program of Shandong Province (Grant No. J15LN36).
    [1]

    Ferguson B, Zhang X C 2002 Nat.Mater. 1 26

    [2]

    Tonouchi M 2007 Nat. Phontonics 1 97

    [3]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [4]

    Xie L, Yao Y, Ying Y 2014 Appl. Spectrosc. Rev. 49 448

    [5]

    Benz A, Krall M, Schwarz S, Dietze D, Detz H, Andrews A M, Schrenk W 2014 Sci. Rep. 4 1

    [6]

    Nagatsuma T 2011 IEICE Electronic Exp. 8 1127

    [7]

    Federici J, Moeller L 2010 J. Appl. Phys. 107 111101

    [8]

    Alves F, Grbovic D, Kearney B, Karunasiri G 2012 Opt. Lett. 37 1886

    [9]

    Iwaszczuk K, Strikwerda A C, Fan K, Zhang X, Averitt R D, Jepsen P U 2011 Opt. Express 20 635

    [10]

    Hua H Q, Jiang Y S, He Y T 2014 Prog. Electromagn. Res. B 59 193

    [11]

    Li S J, Cao X Yu, Gao J Z, Qiu R Z, Yi Y Q 2013 Acta Phys. Sin. 62 194101 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 陈红雅, 赵一, 杨群 2013 物理学报 62 194101]

    [12]

    Cheng C W, Abbas M N, Chiu C W, Lai K T, Shih M H, Chang Y C 2012 Opt. Express 20 10376

    [13]

    Yang X M, Zhou X Y, Cheng Q, Ma H F, Cui T J 2010 Opt. Lett. 35 808

    [14]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese) [李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 物理学报 63 084103]

    [15]

    Chen J, Cheng Q, Zhao J, Cui T J 2014 Prog. Electromagn. Res. 146 71

    [16]

    Ye Y Q, Jin Y, He S L 2014 J. Opt. Soc. Am. B 27 498

    [17]

    Wang F W, Gong S X, Zhang S, Mu X, Hong T 2012 Prog. Electromagn. Res. 25 248

    [18]

    Yang H H, Cao X Y, Gao J, Li W, Yuan Z, Shang K 2013 Prog. Electromagn. Res. 33 31

    [19]

    Wang K, Zhao J, Cheng Q, Dong D S, Cui T J 2014 Sci. Rep. 4 5395

    [20]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Cheng H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [21]

    Li W H, Zhang J Q, Qu S B, Yuan H Y, Shen Y, Wang D J, Guo M C 2015 Acta Phys. Sin. 64 084101 (in Chinese) [李文惠, 张介秋, 屈绍波, 袁航盈, 沈杨, 王冬骏, 过勐超 2015 物理学报 64 084101]

    [22]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light: Sci. Appl. 3 e218

  • [1]

    Ferguson B, Zhang X C 2002 Nat.Mater. 1 26

    [2]

    Tonouchi M 2007 Nat. Phontonics 1 97

    [3]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [4]

    Xie L, Yao Y, Ying Y 2014 Appl. Spectrosc. Rev. 49 448

    [5]

    Benz A, Krall M, Schwarz S, Dietze D, Detz H, Andrews A M, Schrenk W 2014 Sci. Rep. 4 1

    [6]

    Nagatsuma T 2011 IEICE Electronic Exp. 8 1127

    [7]

    Federici J, Moeller L 2010 J. Appl. Phys. 107 111101

    [8]

    Alves F, Grbovic D, Kearney B, Karunasiri G 2012 Opt. Lett. 37 1886

    [9]

    Iwaszczuk K, Strikwerda A C, Fan K, Zhang X, Averitt R D, Jepsen P U 2011 Opt. Express 20 635

    [10]

    Hua H Q, Jiang Y S, He Y T 2014 Prog. Electromagn. Res. B 59 193

    [11]

    Li S J, Cao X Yu, Gao J Z, Qiu R Z, Yi Y Q 2013 Acta Phys. Sin. 62 194101 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 陈红雅, 赵一, 杨群 2013 物理学报 62 194101]

    [12]

    Cheng C W, Abbas M N, Chiu C W, Lai K T, Shih M H, Chang Y C 2012 Opt. Express 20 10376

    [13]

    Yang X M, Zhou X Y, Cheng Q, Ma H F, Cui T J 2010 Opt. Lett. 35 808

    [14]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese) [李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 物理学报 63 084103]

    [15]

    Chen J, Cheng Q, Zhao J, Cui T J 2014 Prog. Electromagn. Res. 146 71

    [16]

    Ye Y Q, Jin Y, He S L 2014 J. Opt. Soc. Am. B 27 498

    [17]

    Wang F W, Gong S X, Zhang S, Mu X, Hong T 2012 Prog. Electromagn. Res. 25 248

    [18]

    Yang H H, Cao X Y, Gao J, Li W, Yuan Z, Shang K 2013 Prog. Electromagn. Res. 33 31

    [19]

    Wang K, Zhao J, Cheng Q, Dong D S, Cui T J 2014 Sci. Rep. 4 5395

    [20]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Cheng H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [21]

    Li W H, Zhang J Q, Qu S B, Yuan H Y, Shen Y, Wang D J, Guo M C 2015 Acta Phys. Sin. 64 084101 (in Chinese) [李文惠, 张介秋, 屈绍波, 袁航盈, 沈杨, 王冬骏, 过勐超 2015 物理学报 64 084101]

    [22]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light: Sci. Appl. 3 e218

  • [1] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试. 物理学报, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [2] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [3] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [4] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [5] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面. 物理学报, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [6] 张旭涛, 阙肖峰, 蔡禾, 孙金海, 张景, 李粮生, 刘永强. 太赫兹雷达散射截面的仿真与时域光谱测量. 物理学报, 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [7] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [8] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [9] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用. 物理学报, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [10] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [11] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [12] 何晶, 苗强, 吴德伟. 微波-光波变电长度缩比条件下目标雷达散射截面相似性研究. 物理学报, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [13] 王瑞君, 邓彬, 王宏强, 秦玉亮. 太赫兹与远红外频段下铝质目标电磁特性与计算. 物理学报, 2014, 63(13): 134102. doi: 10.7498/aps.63.134102
    [14] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [15] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究. 物理学报, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [16] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [17] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [18] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [19] 李民权, 陶小俊, 赵 瑾, 吴先良. 基于辛Runge-Kutta-Nystrom方法的雷达散射截面计算. 物理学报, 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
    [20] 刘少斌, 张光甫, 袁乃昌. 等离子体覆盖立方散射体目标雷达散射截面的时域有限差分法分析. 物理学报, 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
计量
  • 文章访问数:  5884
  • PDF下载量:  517
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-22
  • 修回日期:  2015-04-26
  • 刊出日期:  2015-08-05

/

返回文章
返回