搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Kinoform单透镜的硬X射线聚焦性能

陈直 许良 陈荣昌 杜国浩 邓彪 谢红兰 肖体乔

引用本文:
Citation:

Kinoform单透镜的硬X射线聚焦性能

陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔

Focusing performance of hard X-ray single Kinoform lens

Chen Zhi, Xu Liang, Chen Rong-Chang, Du Guo-Hao, Deng Biao, Xie Hong-Lan, Xiao Ti-Qiao
PDF
导出引用
  • Kinoform单透镜可以高效聚焦硬X射线至纳米量级, 在X射线纳米显微学和纳米光谱学领域有着重要的应用前景. 基于衍射光学和傅里叶光学理论, 给出了X射线经由Kinoform单透镜聚焦的物理模型, 基于数值模拟, 研究了不同材料、光子能量、台阶数量和顶点曲率半径对Kinoform单透镜聚焦性能的影响. 结果表明, 孔径为1 mm的Kinoform单透镜对30 keV的X射线聚焦, 可以得到14 nm焦斑、62 μm焦深, 且可实现4个量级的光强增益和大于30%的光强透过率.
    Nowadays, X-ray nanoprobe plays an important role in many research fields, ranging from materials science to geophysics and environmental science, to biophysics and protein crystallography. Refractive lenses, mirrors, and Laue lenses, can all focus X-rays into a spot with a size of less than 50 nm. To design a refractive lens at fixed wavelengths, absorption in the lens material can be significantly reduced by removing 2πup phase-shifting regions. This permits short focal length devices to be fabricated with small radii of curvatures at the lens apex. This feature allows one to obtain a high efficiency X-ray focusing. The reduced absorption loss also enables optics with a larger aperture, and hence improving the resolution for focusing. Since the single Kinoform lens can focus hard X-ray into a spot on a nanoscale efficiently, it has very important application prospect in X-ray nano-microscopy and nano-spectroscopy. We present a theoretical analysis of optical properties of the single Kinoform lens. Using Fermat's principle of least time, an exact solution of the single Kinoform lens figure is derived. The X-ray diffraction theory is reviewed. The complex amplitude transmittance function of the X-ray single Kinoform lens is derived. According to Fourier optics and optical diffraction theory, we set up the physical model of X-ray single Kinoform lens focusing. Employing this physical model, we study how the focusing performance of hard X-ray single Kinoform lens is influenced by the material, the photon energy, the number of steps and the vertex radius of curvature. We find that diamond single Kinoform lens can achieve a smaller focusing beam size with higher intensity gain than Al and Si single Kinoform lens. The single Kinoform lens designed at a certain photon energy can also focus other photon energies with different lateral beam sizes, axial beam sizes, intensity gains and focusing distances. The numbers of steps of a single Kinoform lens can be lessened with the thickness of step increasing, while the single Kinoform lens keeps good focusing performance. To improve the focusing performance further, reducing the vertex radius of curvature is proposed. Following these rules, a single Kinoform lens is optimally designed to focus 30 keV hard X-ray down to a lateral size of 14 nm (full-width at half-maximum, FWHM) and an axial size of 62 μm (FWHM) with an intensity gain of four orders of magnitude and transmittance of 30%.
    • 基金项目: 国家自然科学基金(批准号: 81430087, 11275257, 11375257)、国家自然科学基金联合重点项目(批准号: U1232205)、国家重点基础研究发展计划(批准号: 2010CB834301)和CAS-CSIRO国际合作项目(批准号: GJHZ1303)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 81430087, 11275257, 11375257), the Joint Funds of the National Natural Science Foundation of China (Grant No. U1232205), the National Basic Research Program of China (Grant No. 2010CB834301), and the External Co-operation Research Project, China (Grant No. GJHZ1303).
    [1]

    Vartanyants I A, Singer A 2010 New J. Phys. 12 035004

    [2]

    Yabashi M, Tono K, Mimura H, Matsuyama S, Yamauchi K, Tanaka T, Tanaka H, Tamasaku K, Ohashi H, Goto S, Ishikawa T 2014 J. Synchrotron Rad. 21 976

    [3]

    Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014 Acta Phys. Sin. 63 104202 (in Chinese) [戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔 2014 物理学报 63 104202]

    [4]

    Ice G E, Budai J D, Pang J W L 2011 Science 334 1234

    [5]

    Sakdinawat A, Attwood D 2010 Nat. Photon. 4 840

    [6]

    Liu H Q, Ren Y Q, Zhou G Z, He Y, Xue Y L, Xiao T Q 2012 Acta Phys. Sin. 61 078701 (in Chinese) [刘慧强, 任玉琦, 周光照, 和友, 薛艳玲, 肖体乔 2012 物理学报 61 078701]

    [7]

    Wang Y D, Peng G Y, Tong Y J, Zhou G Z, Ren Y Q, Yang Q, Xiao T Q 2012 Acta Phys. Sin. 61 054205 (in Chinese) [王玉丹, 彭冠云, 佟亚军, 周光照, 任玉琦, 杨群, 肖体乔 2012 物理学报 61 054205]

    [8]

    Döring F, Robisch A L, Eberl C, Osterhoff M, Ruhlandt A, Liese T, Schlenkrich F, Hoffmann S, Bartels M, Salditt T, Krebs H U 2013 Opt. Express 21 19311

    [9]

    Huang X, Yan H, Nazaretski E, Conley R, Bouet N, Zhou J, Lauer K, Li L, Eom D, Legnini D, Harder R, Robinson I K, Chu Y S 2013 Sci. Rep. 3 3562

    [10]

    Mimura H, Handa S, Kimura T, Yumoto H, Yamakawa D, Yokoyama H, Matsuyama S, Inagaki K, Yamamura K, Sano Y, Tamasaku K, Nishino Y, Yabashi M, Ishikawa T, Yamauchi K 2010 Nat. Phys. 6 122

    [11]

    Schroer C G, Kurapova O, Patommel J, Boye P, Feldkamp J, Lengeler B, Burghammer M, Riekel C, Vincze L, van der Hart A, Küuchler M 2005 Appl. Phys. Lett. 87 124103

    [12]

    Kang H C, Yan H, Winarski R P, Holt M V, Maser J, Liu C, Conley R, Vogt S, Macrander A T, Stephenson G B 2008 Appl. Phys. Lett. 92 221114

    [13]

    Snigirev A, Kohn V, Snigireva I, Lengeler B 1996 Nature 384 49

    [14]

    Chen Z, Xie H L, Deng B, Du G H, Jiang H D, Xiao T Q 2014 Chin. Opt. Lett. 12 123401

    [15]

    Snigirev A, Snigireva I 2008 C. R. Physique 9 507

    [16]

    Elleaume P 1998 J. Synchrotron Rad. 5 1

    [17]

    Kohmura Y, Awaji M, Suzuki Y, Ishikawa T, Dudchik Y I, Kolchevsky N N, Komarov F F 1999 Rev. Sci. Instrum. 70 4161

    [18]

    Lengeler B, Schroer C G, Richwin M, Tummler J, Drakopoulos M, Snigirev A, Snigireva I 1999 Appl. Phys. Lett. 74 3924

    [19]

    Schroer C G,Gunzler T F, Benner B, Kuhlmann M, Tummler J, Lengeler B, Rau C, Weitkamp T, Snigirev A, Snigireva I 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 467 966

    [20]

    Aristov V, Grigoricv M, Kuznetsov S, Shabclnikov L, Yunkin V, Hoffmann M, Vogcs E 2000 Opt. Commun. 177 33

    [21]

    Schroer C G, Kuhlmann M, Hunger U T, Günzler T F, Kurapova O, Feste S, Frehse F, Lengeler B, Drakopoulos M, Somogyi A, Simionovici A S, Snigirev A, Snigireva I, Schug C, Schroder W H 2003 Appl. Phys. Lett. 82 1485

    [22]

    Evans-Lutterodt K, Stein A, Ablett J M, Bozovic N, Taylor A, Tennant D M 2007 Phys. Rev. Lett. 99 134801

    [23]

    Alianelli L, Sawhney K J S, Barrett R, Pape I, Malik A, Wilson M C 2011 Opt. Express 19 11120

    [24]

    Kohn V G 2012 J. Synchrotron Rad. 19 84

    [25]

    Sánchez del Río M 2013 J. Phys.: Conf. Ser. 425 162003

    [26]

    Canestrari N, Chubar O, Reininger R 2014 J. Synchrotron Rad. 21 1110

    [27]

    Born M, Wolf E 1980 Principles of Optics (Oxford: Pergamon Press) p376

    [28]

    Sales T R M, Morris G M 1997 Appl. Opt. 36 253

    [29]

    Buralli D A, Morris G M, Rogers J R 1989 Appl. Opt. 28 976

    [30]

    Lund M W 1997 J. X-Ray Sci. Technol. 7 265

  • [1]

    Vartanyants I A, Singer A 2010 New J. Phys. 12 035004

    [2]

    Yabashi M, Tono K, Mimura H, Matsuyama S, Yamauchi K, Tanaka T, Tanaka H, Tamasaku K, Ohashi H, Goto S, Ishikawa T 2014 J. Synchrotron Rad. 21 976

    [3]

    Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014 Acta Phys. Sin. 63 104202 (in Chinese) [戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔 2014 物理学报 63 104202]

    [4]

    Ice G E, Budai J D, Pang J W L 2011 Science 334 1234

    [5]

    Sakdinawat A, Attwood D 2010 Nat. Photon. 4 840

    [6]

    Liu H Q, Ren Y Q, Zhou G Z, He Y, Xue Y L, Xiao T Q 2012 Acta Phys. Sin. 61 078701 (in Chinese) [刘慧强, 任玉琦, 周光照, 和友, 薛艳玲, 肖体乔 2012 物理学报 61 078701]

    [7]

    Wang Y D, Peng G Y, Tong Y J, Zhou G Z, Ren Y Q, Yang Q, Xiao T Q 2012 Acta Phys. Sin. 61 054205 (in Chinese) [王玉丹, 彭冠云, 佟亚军, 周光照, 任玉琦, 杨群, 肖体乔 2012 物理学报 61 054205]

    [8]

    Döring F, Robisch A L, Eberl C, Osterhoff M, Ruhlandt A, Liese T, Schlenkrich F, Hoffmann S, Bartels M, Salditt T, Krebs H U 2013 Opt. Express 21 19311

    [9]

    Huang X, Yan H, Nazaretski E, Conley R, Bouet N, Zhou J, Lauer K, Li L, Eom D, Legnini D, Harder R, Robinson I K, Chu Y S 2013 Sci. Rep. 3 3562

    [10]

    Mimura H, Handa S, Kimura T, Yumoto H, Yamakawa D, Yokoyama H, Matsuyama S, Inagaki K, Yamamura K, Sano Y, Tamasaku K, Nishino Y, Yabashi M, Ishikawa T, Yamauchi K 2010 Nat. Phys. 6 122

    [11]

    Schroer C G, Kurapova O, Patommel J, Boye P, Feldkamp J, Lengeler B, Burghammer M, Riekel C, Vincze L, van der Hart A, Küuchler M 2005 Appl. Phys. Lett. 87 124103

    [12]

    Kang H C, Yan H, Winarski R P, Holt M V, Maser J, Liu C, Conley R, Vogt S, Macrander A T, Stephenson G B 2008 Appl. Phys. Lett. 92 221114

    [13]

    Snigirev A, Kohn V, Snigireva I, Lengeler B 1996 Nature 384 49

    [14]

    Chen Z, Xie H L, Deng B, Du G H, Jiang H D, Xiao T Q 2014 Chin. Opt. Lett. 12 123401

    [15]

    Snigirev A, Snigireva I 2008 C. R. Physique 9 507

    [16]

    Elleaume P 1998 J. Synchrotron Rad. 5 1

    [17]

    Kohmura Y, Awaji M, Suzuki Y, Ishikawa T, Dudchik Y I, Kolchevsky N N, Komarov F F 1999 Rev. Sci. Instrum. 70 4161

    [18]

    Lengeler B, Schroer C G, Richwin M, Tummler J, Drakopoulos M, Snigirev A, Snigireva I 1999 Appl. Phys. Lett. 74 3924

    [19]

    Schroer C G,Gunzler T F, Benner B, Kuhlmann M, Tummler J, Lengeler B, Rau C, Weitkamp T, Snigirev A, Snigireva I 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 467 966

    [20]

    Aristov V, Grigoricv M, Kuznetsov S, Shabclnikov L, Yunkin V, Hoffmann M, Vogcs E 2000 Opt. Commun. 177 33

    [21]

    Schroer C G, Kuhlmann M, Hunger U T, Günzler T F, Kurapova O, Feste S, Frehse F, Lengeler B, Drakopoulos M, Somogyi A, Simionovici A S, Snigirev A, Snigireva I, Schug C, Schroder W H 2003 Appl. Phys. Lett. 82 1485

    [22]

    Evans-Lutterodt K, Stein A, Ablett J M, Bozovic N, Taylor A, Tennant D M 2007 Phys. Rev. Lett. 99 134801

    [23]

    Alianelli L, Sawhney K J S, Barrett R, Pape I, Malik A, Wilson M C 2011 Opt. Express 19 11120

    [24]

    Kohn V G 2012 J. Synchrotron Rad. 19 84

    [25]

    Sánchez del Río M 2013 J. Phys.: Conf. Ser. 425 162003

    [26]

    Canestrari N, Chubar O, Reininger R 2014 J. Synchrotron Rad. 21 1110

    [27]

    Born M, Wolf E 1980 Principles of Optics (Oxford: Pergamon Press) p376

    [28]

    Sales T R M, Morris G M 1997 Appl. Opt. 36 253

    [29]

    Buralli D A, Morris G M, Rogers J R 1989 Appl. Opt. 28 976

    [30]

    Lund M W 1997 J. X-Ray Sci. Technol. 7 265

  • [1] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [2] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [3] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响. 物理学报, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [4] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [5] 张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖. 四元裂解位相调制实现相干光通过散射介质聚焦. 物理学报, 2017, 66(11): 114202. doi: 10.7498/aps.66.114202
    [6] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [7] 谷文浩, 常胜江, 范飞, 张选洲. 基于锑化铟亚波长阵列结构的太赫兹聚焦器件. 物理学报, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [8] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [9] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [10] 余波, 陈伯伦, 侯立飞, 苏明, 黄天晅, 刘慎业. 化学气相沉积金刚石探测器测量辐射驱动内爆的硬X射线. 物理学报, 2013, 62(5): 058102. doi: 10.7498/aps.62.058102
    [11] 常强, 杨艳芳, 何英, 刘海港, 刘键. 4pi聚焦系统中振幅和相位调制的径向偏振涡旋光束聚焦特性的研究. 物理学报, 2013, 62(10): 104202. doi: 10.7498/aps.62.104202
    [12] 张前安, 吴逢铁, 郑维涛. 轴棱锥-透镜系统产生局域空心光束中心亮斑的消除. 物理学报, 2012, 61(3): 034205. doi: 10.7498/aps.61.034205
    [13] 王铮, 高春清, 辛璟焘. 高阶矢量光束高数值孔径聚焦特性的研究. 物理学报, 2012, 61(12): 124209. doi: 10.7498/aps.61.124209
    [14] 于永江, 陈建农, 闫金良, 王菲菲. 聚焦径向调制Bessel-Gaussian光束实现亚波长尺寸纵向偏振光束. 物理学报, 2011, 60(4): 044205. doi: 10.7498/aps.60.044205
    [15] 赵学峰, 李三伟, 蒋刚, 王传珂, 李志超, 胡峰, 李朝光. 超热电子与金黑腔靶作用产生硬X射线的蒙特卡罗模拟. 物理学报, 2011, 60(7): 075203. doi: 10.7498/aps.60.075203
    [16] 李阳月, 陈子阳, 刘辉, 蒲继雄. 涡旋光束的产生与干涉. 物理学报, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [17] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析. 物理学报, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [18] 黄万霞, 袁清习, 田玉莲, 朱佩平, 姜晓明, 王寯越. 同步辐射硬x射线衍射增强成像新进展. 物理学报, 2005, 54(2): 677-681. doi: 10.7498/aps.54.677
    [19] 于 斌, 彭 翔, 田劲东, 牛憨笨. 硬x射线同轴相衬成像的相位恢复. 物理学报, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
    [20] 高大超, A.POGANY, A.W.STEVENSON, T.GUREYEV, S.W.WILKINS, 麦振洪. 硬X射线位相衬度成象. 物理学报, 2000, 49(12): 2357-2368. doi: 10.7498/aps.49.2357
计量
  • 文章访问数:  5842
  • PDF下载量:  305
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-10
  • 修回日期:  2015-03-25
  • 刊出日期:  2015-08-05

/

返回文章
返回