搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nd:LuYAG混晶1123 nm被动调Q激光器

刘杨 刘兆军 丛振华 徐晓东 徐军 门少杰 夏金宝 张飒飒

引用本文:
Citation:

Nd:LuYAG混晶1123 nm被动调Q激光器

刘杨, 刘兆军, 丛振华, 徐晓东, 徐军, 门少杰, 夏金宝, 张飒飒

A diode pumped passively Q-switched Nd:LuYAG laser emitting at 1123 nm

Liu Yang, Liu Zhao-Jun, Cong Zhen-Hua, Xu Xiao-Dong, Xu Jun, Men Shao-Jie, Xia Jin-Bao, Zhang Sa-Sa
PDF
导出引用
  • 文章报道了一个二极管激光抽运的1123 nm被动调Q激光器. 激光晶体为混晶Nd:LuYAG, 饱和吸收体选为Cr4+:YAG晶体. 在连续运转情况下, 最高输出功率为2.77 W, 对应的光-光转换效率为29.53%. 调Q运转时, 在9.38 W吸收抽运功率下, 最高输出功率为0.94 W. 脉冲宽度整体在105 ns左右. 在最高吸收抽运功率下, 1123 nm激光的输出重复频率为9.40 kHz, 对应的单脉冲能量可达100 J, 高于目前报道的单晶Nd:YAG 1123 nm单脉冲能量, 证明其在能量存储方面较单晶Nd:YAG更具优势. 另外, 据我们所知, 这是关于混晶Nd:LuYAG 1123 nm输出的首次报道.
    A diode pumped passively Q-switched 1123 nm laser is reported in this paper; and a mixed crystal Nd:LuYAG is selected as the gain medium. A large number of excellent properties from Nd:YAG are obtained, and the mixed crystal Nd:LuYAG has been used widely in all-solid-state lasers. Besides, compared with Nd:YAG, the Nd:LuYAG has some other wonderful advantages. For example, both the absorption bands and the fluorescence line are broadened, resulting from the crystal strong inhomogeneity. Their wide absorption makes the Nd:LuYAG lasers' pump source not rigorous in their temperature control. And the broadened fluorescence line can generally improve the laser performance in Q-switched regimes. In this paper, a concave-plane configuration cavity with its length as long as 35 mm is designed to achieve high-efficiency laser output. The rear mirror is a concave mirror with a curvature radius of 300 mm, and the output coupler is a flat mirror with a transmission of 2% at 1123 nm, 5% at 1112 nm, 4% at 1116 nm, and has high transmissions at 1064, 1319 and 1444 nm respectively. A Cr4+:YAG crystal, with its initial transmission of 97%, is used as the saturable absorber. In the continuous wave operation, the maximum average output power can reach 2.77 W, with the corresponding optical-to-optical conversion efficiency of 29.53%. In Q-switched operation, the maximum average output power is 0.94 W at 9.38 W absorbed pump power. The repetition rate is 9.40 kHz, with the corresponding single pulse energy being 100 J. The high single-pulse energy explains that the Nd:LuYAG mixed crystal is better than Nd:YAG in high energy storage. Only one wavelength can be observed in our experiment. The center wavelength is 1122.7 nm and the line width is 0.03 nm. To the best of our knowledge, this is the first time to report the Nd:LuYAG mixed crystal laser emitting at 1123 nm.
      通信作者: 张飒飒, sasazhang@sdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11204160, 61378032, 61211120196)和山东省科技攻关项目(批准号: 2010GGX10137)资助的课题.
      Corresponding author: Zhang Sa-Sa, sasazhang@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204160, 61378032, 61211120196), and the Shandong province science and technology research projects, China (Grant No. 2010GGX10137).
    [1]

    Zhang G, Zhu H Y, Huang C H, Li A H, Wei Y, Lin Y F 2009 Acta Phys. Sin. 58 3909 (in Chinese) [张戈, 朱海永, 黄呈辉, 李爱红, 魏勇, 林燕凤 2009 物理学报 58 3909]

    [2]

    Liu H, Yao J Q, Zheng F H, Lu Y, Wang P 2008 Acta Phys. Sin. 57 230 (in Chinese) [刘欢, 姚建铨, 郑芳华, 路洋, 王鹏 2008 物理学报 57 230]

    [3]

    Wang C, Wei H, Wang J F, Jiang Y E, Fan W, Li X C 2014 Acta Phys. Sin. 63 224204 (in Chinese) [汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春 2014 物理学报 63 224204]

    [4]

    Wang Y Y, Xu D G, Liu C M, Wang W P, Yao J Q 2012 Chin. Phys. B 21 94212

    [5]

    Xie S Y, Lu Y F, Ma Q L, Wang P Y, Shen Y, Zong N, Yang F, Bo Y, Peng Q J, Cui D F, Xu Z Y 2010 Chin. Phys. B 19 64208

    [6]

    Allik T H, Hovis W W, Caffey D P, King V 1989 Opt. Lett. 14 116

    [7]

    Di J Q, Xu X D, Li D Z, Wu F, Zhao Z W, Xu J, Tang D Y 2011 Laser Phys. 21 1742

    [8]

    Di J Q, Xu X D, Tan W D, Zhang J, Tang D Y, Li D Z, Zhou D H, Wu F, Xu J 2013 Laser Phys. Lett. 10 095801

    [9]

    Paschotta R, Moore N, Clarkson W A, Tropper A C, Hanna D C, Máze G 1997 IEEE J. Sel. Top. Quantum Electron. 3 1100

    [10]

    Booth I J, Archambault J L, Ventrudo B F 1996 Opt. Lett. 21 348

    [11]

    Li P, Chen X H, Zhang H N, Ma B M, Wang Q P 2011 Appl. Phys. Express 4 092702

    [12]

    Chen Y F, Lan Y P 2004 Appl. Phys. B 79 29

    [13]

    Huang J Y, Liang H C, K W K W, Lai H C, Chen Y F, Huang K F 2007 Appl. Opt. 46 239

    [14]

    Räikkönen E, Kimmelma E O, Kaivola M, Buchter S C 2008 Opt. Commun. 281 4088

  • [1]

    Zhang G, Zhu H Y, Huang C H, Li A H, Wei Y, Lin Y F 2009 Acta Phys. Sin. 58 3909 (in Chinese) [张戈, 朱海永, 黄呈辉, 李爱红, 魏勇, 林燕凤 2009 物理学报 58 3909]

    [2]

    Liu H, Yao J Q, Zheng F H, Lu Y, Wang P 2008 Acta Phys. Sin. 57 230 (in Chinese) [刘欢, 姚建铨, 郑芳华, 路洋, 王鹏 2008 物理学报 57 230]

    [3]

    Wang C, Wei H, Wang J F, Jiang Y E, Fan W, Li X C 2014 Acta Phys. Sin. 63 224204 (in Chinese) [汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春 2014 物理学报 63 224204]

    [4]

    Wang Y Y, Xu D G, Liu C M, Wang W P, Yao J Q 2012 Chin. Phys. B 21 94212

    [5]

    Xie S Y, Lu Y F, Ma Q L, Wang P Y, Shen Y, Zong N, Yang F, Bo Y, Peng Q J, Cui D F, Xu Z Y 2010 Chin. Phys. B 19 64208

    [6]

    Allik T H, Hovis W W, Caffey D P, King V 1989 Opt. Lett. 14 116

    [7]

    Di J Q, Xu X D, Li D Z, Wu F, Zhao Z W, Xu J, Tang D Y 2011 Laser Phys. 21 1742

    [8]

    Di J Q, Xu X D, Tan W D, Zhang J, Tang D Y, Li D Z, Zhou D H, Wu F, Xu J 2013 Laser Phys. Lett. 10 095801

    [9]

    Paschotta R, Moore N, Clarkson W A, Tropper A C, Hanna D C, Máze G 1997 IEEE J. Sel. Top. Quantum Electron. 3 1100

    [10]

    Booth I J, Archambault J L, Ventrudo B F 1996 Opt. Lett. 21 348

    [11]

    Li P, Chen X H, Zhang H N, Ma B M, Wang Q P 2011 Appl. Phys. Express 4 092702

    [12]

    Chen Y F, Lan Y P 2004 Appl. Phys. B 79 29

    [13]

    Huang J Y, Liang H C, K W K W, Lai H C, Chen Y F, Huang K F 2007 Appl. Opt. 46 239

    [14]

    Räikkönen E, Kimmelma E O, Kaivola M, Buchter S C 2008 Opt. Commun. 281 4088

  • [1] 段延敏, 周玉明, 孙瑛璐, 李志红, 张耀举, 王鸿雁, 朱海永. 声光调Q Nd:YVO4晶体级联拉曼倍频窄脉宽657 nm激光器. 物理学报, 2021, 70(22): 224209. doi: 10.7498/aps.70.20210695
    [2] 郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗. 基于铋纳米片可饱和吸收被动调Q中红外单晶光纤激光器. 物理学报, 2020, 69(18): 184205. doi: 10.7498/aps.69.20200337
    [3] 窦微, 浦双双, 牛娜, 曲大鹏, 孟祥峻, 赵岭, 郑权. 双波长二极管合束端面抽运掺镨氟化钇锂单纵模360 nm紫外激光器. 物理学报, 2019, 68(5): 054202. doi: 10.7498/aps.68.20182018
    [4] 唐熊忻, 邱基斯, 樊仲维, 王昊成, 刘悦亮, 刘昊, 苏良碧. 用于惯性约束核聚变激光驱动器的激光二极管抽运Nd,Y:CaF2激光放大器的实验研究. 物理学报, 2016, 65(20): 204206. doi: 10.7498/aps.65.204206
    [5] 李斌, 丁欣, 孙冰, 盛泉, 姜鹏波, 张巍, 刘简, 范琛, 张海永, 姚建铨. 28.2 W波长锁定878.6 nm激光二极管共振抽运双晶体1064 nm激光器. 物理学报, 2014, 63(21): 214206. doi: 10.7498/aps.63.214206
    [6] 汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春. 激光二极管抽运的高重频高平均功率Nd:YAG激光器. 物理学报, 2014, 63(22): 224204. doi: 10.7498/aps.63.224204
    [7] 樊莉, 陈海涛, 朱骏. 激光二极管抽运的Nd:YVO4连续自拉曼1175nm激光器. 物理学报, 2014, 63(15): 154208. doi: 10.7498/aps.63.154208
    [8] 周英, 戴玉, 姚淑娜, 刘军, 陈家斌, 陈淑芬, 辛建国. 激光二极管抽运Nd:YVO4晶体的三维热效应分析. 物理学报, 2013, 62(2): 024210. doi: 10.7498/aps.62.024210
    [9] 宋小鹿, 过振, 李兵斌, 王石语, 蔡德芳, 文建国. 脉冲激光二极管侧面抽运Nd∶YAG激光器晶体时变热效应. 物理学报, 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [10] 刘欢, 巩马理. 紧凑型激光二极管抽运全固态355 nm连续波紫外激光器. 物理学报, 2009, 58(10): 7000-7004. doi: 10.7498/aps.58.7000
    [11] 张恒利, 闫 莹, 杜克明. 激光二极管端面抽运Nd∶YVO4晶体连续输出板条激光器研究. 物理学报, 2008, 57(11): 6982-6986. doi: 10.7498/aps.57.6982
    [12] 张秋琳, 苏红新, 孙 江, 郭庆林, 付广生. LD抽运被动调Q固体激光器的脉冲稳定性. 物理学报, 2007, 56(10): 5818-5820. doi: 10.7498/aps.56.5818
    [13] 吴朝晖, 宋 峰, 刘淑静, 蔡 虹, 苏 静, 田建国, 张光寅. LD抽运Er3+,Yb3+共掺磷酸盐玻璃被动调Q激光器的理论分析和数值计算. 物理学报, 2006, 55(9): 4659-4664. doi: 10.7498/aps.55.4659
    [14] 王勇刚, 马骁宇, 付圣贵, 范万德, 李 强, 袁树忠, 董孝义, 宋晏蓉, 张志刚. 离子注入GaAs实现双包层掺镱光纤激光器被动调Q锁模. 物理学报, 2004, 53(6): 1810-1814. doi: 10.7498/aps.53.1810
    [15] 尚连聚. 激光二极管端面抽运的1.34μm Nd:YVO4平凹腔型激光器. 物理学报, 2003, 52(10): 2476-2480. doi: 10.7498/aps.52.2476
    [16] 杨 林, 黄维玲, 丘军林, 冯宝华, 张治国, Volker Gaebler, Baining Liu, Hans J.Eichler. Cr4+:YAG被动调Q激光器中受激粒子上转换效应对脉冲的影响研究. 物理学报, 2003, 52(10): 2471-2475. doi: 10.7498/aps.52.2471
    [17] 尚连聚, 郑义. 激光二极管端面抽运的1.34μm Nd:YVO4三镜折叠腔型激光器. 物理学报, 2002, 51(9): 2015-2017. doi: 10.7498/aps.51.2015
    [18] 李瑞宁, 来引娟, 马小涛. 激光二极管抽运Nd∶YVO4和KTP倍频产生单频绿光激发器. 物理学报, 2002, 51(8): 1736-1738. doi: 10.7498/aps.51.1736
    [19] 柳强, 巩马理, 闫平, 贾维溥, 崔瑞祯, 王东生. GaAs被动调Q兼输出耦合Nd∶YVO4激光特性研究. 物理学报, 2002, 51(12): 2756-2760. doi: 10.7498/aps.51.2756
    [20] 张恒利, 何京良, 陈毓川, 侯 玮, 刘 嵘, 冯宝华, 许祖彦, 王建明, 吴 星, 吴柏昌, 陈创天. 激光二极管抽运Nd∶YVO4晶体1342nm和671nm激光器研究. 物理学报, 1998, 47(9): 1579-1584. doi: 10.7498/aps.47.1579
计量
  • 文章访问数:  5649
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-09
  • 修回日期:  2015-03-22
  • 刊出日期:  2015-09-05

/

返回文章
返回