搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称弯曲微流道中粒子惯性聚焦动态过程及流速调控机理研究

唐文来 项楠 张鑫杰 黄笛 倪中华

引用本文:
Citation:

非对称弯曲微流道中粒子惯性聚焦动态过程及流速调控机理研究

唐文来, 项楠, 张鑫杰, 黄笛, 倪中华

Dynamic process and flow-rate regulation mechanism of particle inertial focusing in an asymmetric ally curved microchannel

Tang Wen-Lai, Xiang Nan, Zhang Xin-Jie, Huang Di, Ni Zhong-Hua
PDF
导出引用
  • 设计制作了一种具有非对称弯曲微流道结构的微流控芯片, 搭建实验平台定量表征聚苯乙烯粒子和血细胞沿流道的动态惯性聚焦过程, 并系统研究了流体流速和粒子尺寸对粒子聚焦特性的调控机理. 通过分析粒子荧光图谱和对应量化强度曲线, 将粒子沿流道长度的横向迁移过程分为形成聚焦和平衡位置调整两个阶段, 指出在整个聚焦过程中具有小曲率半径的流道结构起主导作用. 根据全流速段内粒子聚焦特性的演变, 重点分析潜在惯性升力和Dean 曳力的竞争机制, 提出了阐述粒子聚焦流速调控过程的三阶段模型. 进一步比较两种尺寸粒子聚焦位置和聚焦率随流速与流道长度的变化规律, 发现大粒子具有更好的聚焦效果和稳定性, 且两种粒子的相对位置可通过流速进行调整. 最后, 通过分析血细胞在非对称弯流道中的横向迁移特性, 验证了粒子惯性聚焦机理在复杂生物粒子操控方面的适用性. 上述结论为深入研究微流体环境下粒子的运动特性以及开发微流式细胞术等临床即时诊断器件提供了重要参考.
    In this paper, an asymmetrically curved microchannel device is designed and fabricated to quantitatively characterize the dynamic inertial focusing process of polystyrene particles and blood cells flowing along the channel. The experimental investigations are systematically carried out to probe into the regulation mechanisms of flow rate and particle size. Specifically, based on the particle fluorescent streak images and the corresponding intensity profiles at specific downstream positions, the lateral migration behaviors of particles in the mirochannel can be divided into two stages: the formation of focused streak and the shift of focusing position. It is also found that the channel structures with small radii are dominant during the whole inertial focusing process. A three-stage model is then presented to elucidate the flow-rate regulation mechanism in terms of the competition between inertial lift force and Dean drag force, according to the evolution of particle focusing dynamics with increasing flow rates. By making comparisons of focusing position and focusing ratio between two different-sized particles under various experimental conditions, we find that the larger particles have better focusing performances and stabilities, and the relative focusing position of different-sized particles can be adjusted by changing the driving flow rate. Finally, the applicability of the explored inertial focusing mechanisms for manipulating biological particles with complex features is investigated by analyzing the lateral migration behaviors of blood cells in the asymmetrically curved microchannel. The obtained conclusions are very important for understanding the particle focusing dynamics in micro-scale flows and developing the point-of-care diagnostic instruments.
      通信作者: 倪中华, nzh2003@seu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB707601)、国家自然科学基金(批准号: 51375089, 51505082)、中央高校基本科研业务费专项资金、江苏省普通高校研究生科研创新计划资助项目(批准号: KYLX_0098)和东南大学优秀博士学位论文培育基金(批准号: YBJJ1428)资助的课题.
      Corresponding author: Ni Zhong-Hua, nzh2003@seu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB707601), the National Natural Science Foundation of China (Grant Nos. 51375089, 51505082), the Fundamental Research Funds for the Central Universities, China, the Jiangsu Graduate Innovative Research Program, China (Grant No. KYLX_0098), and the Scientific Research Foundation of Graduate School of Southeast University, China (Grant No. YBJJ1428).
    [1]

    Di Carlo D, Irimia D, Tompkins R G, Toner M 2007 Proc. Natl. Acad. Sci. U.S.A. 104 18892

    [2]

    Martel J M, Toner M 2014 Annu. Rev. Biomed. Eng. 16 371

    [3]

    Segre G, Silberberg A 1961 Nature 189 209

    [4]

    Asmolov E S 1999 J. Fluid Mech. 381 63

    [5]

    Ho B P, Leal L G 1974 J. Fluid Mech. 65 365

    [6]

    Gossett D R, Tse H T K, Dudani J S, Goda K, Woods T A, Graves S W, Di Carlo D 2012 Small 8 2757

    [7]

    Di Carlo D, Edd J F, Humphry K J, Stone H A, Toner M 2009 Phys. Rev. Lett. 102 094503

    [8]

    Choi Y S, Seo K W, Lee S J 2011 Lab Chip 11 460

    [9]

    Sun D K, Xiang N, Chen K, Ni Z H 2013 Acta Phys. Sin. 62 024703(in Chinese) [孙东科, 项楠, 陈科, 倪中华 2013 物理学报 62 024703]

    [10]

    Sun D K, Xiang N, Jiang D, Chen K, Yi H, Ni Z H 2013 Chin. Phys. B 22 114704

    [11]

    Seo K W, Choi Y S, Lee S J 2012 Exp. Fluids 53 1867

    [12]

    Martel J M, Toner M 2012 Phys. Fluids 24 032001

    [13]

    Martel J M, Toner M 2013 Sci. Rep. 3 3340

    [14]

    Di Carlo D, Edd J F, Irimia D, Tompkins R G, Toner M 2008 Anal. Chem. 80 2204

    [15]

    Gossett D R, Di Carlo D 2009 Anal. Chem. 81 8459

    [16]

    Karabacak N M, Spuhler P S, Fachin F, Lim E J, Pai V, Ozkumur E, Martel J M, Kojic N, Smith K, Chen P I, Yang J, Hwang H, Morgan B, Trautwein J, Barber T A, Stott S L, Maheswaran S, Kapur R, Haber D A, Toner M 2014 Nat. Protoc. 9 694

    [17]

    Oakey J, Applegate R W, Arellano E, Di Carlo D, Graves S W, Toner M 2010 Anal. Chem. 82 3862

    [18]

    Gossett D R, Tse H T K, Lee S A, Ying Y, Lindgren A G, Yang O O, Rao J Y, Clark A T, Di Carlo D 2012 Proc. Natl. Acad. Sci. U.S.A. 109 7630

    [19]

    Berger S A, Talbot L, Yao L S 1983 Annu. Rev. Fluid Mech. 15 461

    [20]

    Dean W R 1927 Philos. Mag. Ser. 74 208

    [21]

    Amini H, Lee W, Di Carlo D 2014 Lab Chip 14 2739

    [22]

    Xiang N, Yi H, Chen K, Sun D K, Jiang D, Dai Q, Ni Z H 2013 Biomicrofluidics 7 044116

    [23]

    Hur S C, Henderson-Maclennan N K, Mccabe E R B, Di Carlo D 2011 Lab Chip 11 912

  • [1]

    Di Carlo D, Irimia D, Tompkins R G, Toner M 2007 Proc. Natl. Acad. Sci. U.S.A. 104 18892

    [2]

    Martel J M, Toner M 2014 Annu. Rev. Biomed. Eng. 16 371

    [3]

    Segre G, Silberberg A 1961 Nature 189 209

    [4]

    Asmolov E S 1999 J. Fluid Mech. 381 63

    [5]

    Ho B P, Leal L G 1974 J. Fluid Mech. 65 365

    [6]

    Gossett D R, Tse H T K, Dudani J S, Goda K, Woods T A, Graves S W, Di Carlo D 2012 Small 8 2757

    [7]

    Di Carlo D, Edd J F, Humphry K J, Stone H A, Toner M 2009 Phys. Rev. Lett. 102 094503

    [8]

    Choi Y S, Seo K W, Lee S J 2011 Lab Chip 11 460

    [9]

    Sun D K, Xiang N, Chen K, Ni Z H 2013 Acta Phys. Sin. 62 024703(in Chinese) [孙东科, 项楠, 陈科, 倪中华 2013 物理学报 62 024703]

    [10]

    Sun D K, Xiang N, Jiang D, Chen K, Yi H, Ni Z H 2013 Chin. Phys. B 22 114704

    [11]

    Seo K W, Choi Y S, Lee S J 2012 Exp. Fluids 53 1867

    [12]

    Martel J M, Toner M 2012 Phys. Fluids 24 032001

    [13]

    Martel J M, Toner M 2013 Sci. Rep. 3 3340

    [14]

    Di Carlo D, Edd J F, Irimia D, Tompkins R G, Toner M 2008 Anal. Chem. 80 2204

    [15]

    Gossett D R, Di Carlo D 2009 Anal. Chem. 81 8459

    [16]

    Karabacak N M, Spuhler P S, Fachin F, Lim E J, Pai V, Ozkumur E, Martel J M, Kojic N, Smith K, Chen P I, Yang J, Hwang H, Morgan B, Trautwein J, Barber T A, Stott S L, Maheswaran S, Kapur R, Haber D A, Toner M 2014 Nat. Protoc. 9 694

    [17]

    Oakey J, Applegate R W, Arellano E, Di Carlo D, Graves S W, Toner M 2010 Anal. Chem. 82 3862

    [18]

    Gossett D R, Tse H T K, Lee S A, Ying Y, Lindgren A G, Yang O O, Rao J Y, Clark A T, Di Carlo D 2012 Proc. Natl. Acad. Sci. U.S.A. 109 7630

    [19]

    Berger S A, Talbot L, Yao L S 1983 Annu. Rev. Fluid Mech. 15 461

    [20]

    Dean W R 1927 Philos. Mag. Ser. 74 208

    [21]

    Amini H, Lee W, Di Carlo D 2014 Lab Chip 14 2739

    [22]

    Xiang N, Yi H, Chen K, Sun D K, Jiang D, Dai Q, Ni Z H 2013 Biomicrofluidics 7 044116

    [23]

    Hur S C, Henderson-Maclennan N K, Mccabe E R B, Di Carlo D 2011 Lab Chip 11 912

  • [1] 闫轶著, 丁帅, 韩旭, 王秉中. 基于信道处理的时间反演幅度可调控多目标聚焦方法. 物理学报, 2023, 72(16): 164101. doi: 10.7498/aps.72.20230547
    [2] 郝鹏, 张丽丽, 丁明明. 高分子囊泡在微管流中惯性迁移现象的有限元分析. 物理学报, 2022, 71(18): 188701. doi: 10.7498/aps.71.20220606
    [3] 龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文. 尺寸调控SnO2量子点的阻变性能及调控机理. 物理学报, 2021, 70(19): 197301. doi: 10.7498/aps.70.20210608
    [4] 邹雄, 漆小波, 张涛先, 高章帆, 黄卫星. 惯性约束聚变靶丸内杂质气体抽空流洗过程的数值模拟. 物理学报, 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [5] 李东阳, 张远宪, 欧永雄, 普小云. 聚二甲基硅氧烷微流道中光流控荧光共振能量转移激光. 物理学报, 2019, 68(5): 054203. doi: 10.7498/aps.68.20181696
    [6] 刘宾, 潘毅华, 闫文敏. 光场重聚焦成像的散焦机理及聚焦评价函数. 物理学报, 2019, 68(20): 204202. doi: 10.7498/aps.68.20190725
    [7] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [8] 李蕾, 张程宾. 电场对协流式微流控装置中乳液液滴生成行为的调控机理. 物理学报, 2018, 67(17): 176801. doi: 10.7498/aps.67.20180616
    [9] 张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新. 具有p-GaN岛状埋层耐压结构的横向AlGaN/GaN高电子迁移率晶体管. 物理学报, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [10] 陈强, 漆小波, 陈素芬, 刘梅芳, 潘大伟, 李波, 张占文. 微流控技术中双重乳粒尺寸调控规律的研究. 物理学报, 2017, 66(4): 046801. doi: 10.7498/aps.66.046801
    [11] 郑莉, 郭建中. 圆环形聚焦声场的构建与调控. 物理学报, 2016, 65(4): 044305. doi: 10.7498/aps.65.044305
    [12] 戴卿, 项楠, 程洁, 倪中华. 圆截面直流道中微粒黏弹性聚焦机理研究. 物理学报, 2015, 64(15): 154703. doi: 10.7498/aps.64.154703
    [13] 杨波, 梅冬成. 非高斯噪声对惯性棘轮中粒子负迁移率的影响. 物理学报, 2013, 62(11): 110502. doi: 10.7498/aps.62.110502
    [14] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为. 物理学报, 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [15] 许少锋, 汪久根. 微通道中高分子溶液Poiseuille流的耗散粒子动力学模拟. 物理学报, 2013, 62(12): 124701. doi: 10.7498/aps.62.124701
    [16] 张金松, 吴懿平, 王永国, 陶媛. 集成电路微互连结构中的热迁移. 物理学报, 2010, 59(6): 4395-4402. doi: 10.7498/aps.59.4395
    [17] 董建军, 曹磊峰, 陈 铭, 谢常青, 杜华冰. 微聚焦菲涅耳波带板聚焦特性研究. 物理学报, 2008, 57(5): 3044-3047. doi: 10.7498/aps.57.3044
    [18] 尤学一, 郑湘君, 郑敬茹. 微尺度流道内液体表观黏性系数的分子理论. 物理学报, 2007, 56(4): 2323-2329. doi: 10.7498/aps.56.2323
    [19] 李宝兴, 叶美英, 褚巧燕, 俞 健. 玻璃微流控芯片表面改性的微观机理研究. 物理学报, 2007, 56(6): 3446-3452. doi: 10.7498/aps.56.3446
    [20] 林鸿荪. 任意横向载荷下弹性圆形及圆环形薄板的弯曲. 物理学报, 1956, 12(4): 360-375. doi: 10.7498/aps.12.360
计量
  • 文章访问数:  5351
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-30
  • 修回日期:  2015-04-22
  • 刊出日期:  2015-09-05

/

返回文章
返回