搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于椭圆偏振光注入垂直腔表面发射激光器的正交偏振模式单周期振荡产生两路光子微波

周娅 吴正茂 樊利 孙波 何洋 夏光琼

引用本文:
Citation:

基于椭圆偏振光注入垂直腔表面发射激光器的正交偏振模式单周期振荡产生两路光子微波

周娅, 吴正茂, 樊利, 孙波, 何洋, 夏光琼

Two channel photonic microwave generation based on period-one oscillations of two orthogonally polarized modes in a vertical-cavity surface-emitting laser subjected to an elliptically polarized optical injection

Zhou Ya, Wu Zheng-Mao, Fan Li, Sun Bo, He Yang, Xia Guang-Qiong
PDF
导出引用
  • 提出了基于椭圆偏振光注入下垂直腔表面发射激光器(VCSEL)输出的正交偏振模式单周期(P1)振荡来同时获取两路光子微波的实现方案, 并进行了相关仿真研究. 结果表明: 在合适的参数条件下, 一个自由运行的VCSEL(定义为主VCSEL, M-VCSEL)可输出椭圆偏振光, 其X偏振分量和Y 偏振分量具有相同的激射频率; 将M-VCSEL输出的椭圆偏振光注入到另外一个VCSEL(定义为副VCSEL, S-VCSEL), 在给定主副VCSEL间频率失谐的条件下, 通过选择合适的注入强度可使S-VCSEL 中两个偏振分量均呈现单周期(P1)振荡, 从而可获得两正交的光子微波信号; 随着注入强度的增加, 光子微波的频率以及功率均呈现增加的趋势; 结合微波频率、功率以及输出光谱中第一边带和第二边带的幅度差在由注入强度和频率失谐所构成参数空间下的分布图, 可确定获取高品质微波信号的优化注入参数范围.
    Previous investigations demonstrated that a semiconductor laser subjected to optical injection can realize period-one (P1) oscillation output under suitable operational parameters, which can be used to obtain high quality photonic microwave. In this paper, we propose a scheme for simultaneously generating two channel photonic microwave based on the P1 oscillations of two orthogonally polarization modes in a vertical-cavity surface-emitting laser (VCSEL) subjected to an elliptical polarization optical injection, and the relevant characteristics of obtained photonic microwave are numerically simulated and analyzed. The results show that under suitable operational parameters, a free-running VCSEL (named master VCSEL, M-VCSEL) can output an elliptical polarization light in which both X and Y polarization components of the elliptical polarization light oscillate at the same frequency. By using the elliptical polarization light from the M-VCSEL as an injection light into another VCSEL (named slave VCSEL, S-VCSEL), both two polarization components of the S-VCSEL can be driven into P1 oscillation through selecting suitable injection strength under a fixed frequency detuning between the M-VCSEL and the S-VCSEL. Based on the P1 oscillation, two orthogonally photonic microwave signals can be obtained. With the increase of the injection strength from the M-VCSEL, the frequency of photonic microwave shows a gradually increasing trend while the power of photonic microwave displays an increasing process accompanied by slight ripples. Combining the distribution mappings of the frequency, the power, and the amplitude difference between the first sideband and the second sideband of the photonic microwave in the parameter space of the injection strength and the frequency detuning, certain regions with optimally operational parameters can be determined for acquiring high quality photonic microwave.
    • 基金项目: 国家自然科学基金(批准号: 61178011, 61275116, 61475127, 61575163)和毫米波国家重点实验室开放基金(批准号: K201418)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178011, 61275116, 61475127, 61575163) and the Open Fund of the State Key Laboratory of Millimeter Waves of China (Grant No. K201418).
    [1]

    Sacher J, Baums D, Panknin P, Elsässer W, G&246;bel E O 1992 Phys. Rev. A 45 1893

    [2]

    Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1994 Appl. Phys. Lett. 64 3539

    [3]

    Qi X Q, Liu J M 2011 IEEE J. Quantum Electron. 47 762

    [4]

    Kong H J, Wu Z M, Wu J G, Xie Y K, Lin X D, Xia G Q 2008 Chaos Soliton. Fract. 36 18

    [5]

    Yan S L 2009 Acta Opt. Sin. 29 996 (in Chinese) [颜森林 2009 光学学报 29 996]

    [6]

    Wang A B, Wan Y C, Wang J F 2009 Opt. Lett. 34 1144

    [7]

    Chen J J, Xia G Q, Wu Z M 2015 Chin. Phys. B 24 024210

    [8]

    Simpson T B, Liu J M, Gavrielides A 1995 IEEE Photon. Technol. Lett. 7 709

    [9]

    Liu J M, Chen H F, Meng X J, Simpson T B 1997 IEEE Photon. Technol. Lett. 9 1325

    [10]

    Murakami A, Kawashima K, Atsuki K 2003 IEEE J. Quantum Electron. 39 1196

    [11]

    Yan S L 2005 Chin. Opt. Lett. 3 283

    [12]

    Tang S, Chen H F, Hwang S K, Liu J M 2002 IEEE Trans. Circ. Syst. 49 163

    [13]

    Li X Z, Chan S C 2012 Opt. Lett. 37 2163

    [14]

    Simpson T B, Liu J M, Huang K F, Tai K 1997 Quantum Semiclass. Opt. 9 765

    [15]

    Juan Y S, Lin F Y 2011 IEEE Photon. J. 3 644

    [16]

    Lin X D, Deng T, Xie Y Y, Wu J G, Chen J G, Wu Z M, Xia G Q 2012 Acta Phys. Sin. 61 194212 (in Chinese) [林晓东, 邓涛, 解宜原, 吴加贵, 陈建国, 吴正茂, 夏光琼 2012 物理学报 61 194212]

    [17]

    Chan S C, Liu J M 2006 IEEE J. Quantum Electron. 42 699

    [18]

    Chan S C, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 1025

    [19]

    Fan L, Wu Z M, Deng T, Wu J G, Tang X, Chen J J, Mao S, Xia G Q https://www.osapublishing.org/jlt/abstract.cfm?uri=jlt-32-23-4058

    [20]

    Zhuang J P, Chan S C https://www.osapublishing.org/ol/fulltext.cfm?uri=ol-38-3-344&id=248736

    [21]

    Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921

    [22]

    Cui C, Chan S C 2012 IEEE J. Quantum Electron. 48 490

    [23]

    Diaz R, Chan S C, Liu J M 2006 Opt. Lett. 31 3600

    [24]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [25]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [26]

    Michalzik R 2013 VCSELs: Fundamentals, Technology and Applications of Vertical-cavity Surface-emitting Lasers (Berlin: Springer) p217

    [27]

    Al-Seyab R, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700512

    [28]

    Liu Q X, Pan W, Zhang L Y, Li N Q, Yan J 2015 Acta Phys. Sin. 64 024209 (in Chinese) [刘庆喜, 潘炜, 张力月, 李念强, 阎娟 2015 物理学报 64 024209]

  • [1]

    Sacher J, Baums D, Panknin P, Elsässer W, G&246;bel E O 1992 Phys. Rev. A 45 1893

    [2]

    Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1994 Appl. Phys. Lett. 64 3539

    [3]

    Qi X Q, Liu J M 2011 IEEE J. Quantum Electron. 47 762

    [4]

    Kong H J, Wu Z M, Wu J G, Xie Y K, Lin X D, Xia G Q 2008 Chaos Soliton. Fract. 36 18

    [5]

    Yan S L 2009 Acta Opt. Sin. 29 996 (in Chinese) [颜森林 2009 光学学报 29 996]

    [6]

    Wang A B, Wan Y C, Wang J F 2009 Opt. Lett. 34 1144

    [7]

    Chen J J, Xia G Q, Wu Z M 2015 Chin. Phys. B 24 024210

    [8]

    Simpson T B, Liu J M, Gavrielides A 1995 IEEE Photon. Technol. Lett. 7 709

    [9]

    Liu J M, Chen H F, Meng X J, Simpson T B 1997 IEEE Photon. Technol. Lett. 9 1325

    [10]

    Murakami A, Kawashima K, Atsuki K 2003 IEEE J. Quantum Electron. 39 1196

    [11]

    Yan S L 2005 Chin. Opt. Lett. 3 283

    [12]

    Tang S, Chen H F, Hwang S K, Liu J M 2002 IEEE Trans. Circ. Syst. 49 163

    [13]

    Li X Z, Chan S C 2012 Opt. Lett. 37 2163

    [14]

    Simpson T B, Liu J M, Huang K F, Tai K 1997 Quantum Semiclass. Opt. 9 765

    [15]

    Juan Y S, Lin F Y 2011 IEEE Photon. J. 3 644

    [16]

    Lin X D, Deng T, Xie Y Y, Wu J G, Chen J G, Wu Z M, Xia G Q 2012 Acta Phys. Sin. 61 194212 (in Chinese) [林晓东, 邓涛, 解宜原, 吴加贵, 陈建国, 吴正茂, 夏光琼 2012 物理学报 61 194212]

    [17]

    Chan S C, Liu J M 2006 IEEE J. Quantum Electron. 42 699

    [18]

    Chan S C, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 1025

    [19]

    Fan L, Wu Z M, Deng T, Wu J G, Tang X, Chen J J, Mao S, Xia G Q https://www.osapublishing.org/jlt/abstract.cfm?uri=jlt-32-23-4058

    [20]

    Zhuang J P, Chan S C https://www.osapublishing.org/ol/fulltext.cfm?uri=ol-38-3-344&id=248736

    [21]

    Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921

    [22]

    Cui C, Chan S C 2012 IEEE J. Quantum Electron. 48 490

    [23]

    Diaz R, Chan S C, Liu J M 2006 Opt. Lett. 31 3600

    [24]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [25]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [26]

    Michalzik R 2013 VCSELs: Fundamentals, Technology and Applications of Vertical-cavity Surface-emitting Lasers (Berlin: Springer) p217

    [27]

    Al-Seyab R, Schires K, Hurtado A, Henning I D, Adams M J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1700512

    [28]

    Liu Q X, Pan W, Zhang L Y, Li N Q, Yan J 2015 Acta Phys. Sin. 64 024209 (in Chinese) [刘庆喜, 潘炜, 张力月, 李念强, 阎娟 2015 物理学报 64 024209]

  • [1] 潘智鹏, 李伟, 吕家纲, 聂语葳, 仲莉, 刘素平, 马骁宇. 940 nm 垂直腔面发射激光器单管器件的设计与制备. 物理学报, 2023, 72(11): 114203. doi: 10.7498/aps.72.20230297
    [2] 麻艳娜, 王文睿, 宋开臣, 于晋龙, 马闯, 张华芳. 基于双波长时域合成技术的微波光子波形产生. 物理学报, 2019, 68(17): 174203. doi: 10.7498/aps.68.20190151
    [3] 陈俊, 陈建军, 吴正茂, 蒋波, 夏光琼. 可变偏振光注入下1550nm垂直腔面发射激光器的偏振开关及双稳特性. 物理学报, 2016, 65(16): 164204. doi: 10.7498/aps.65.164204
    [4] 张华芳, 王文睿, 于晋龙, 王菊, 杨恩泽. 基于偏振延时干涉技术的光子波形产生技术研究. 物理学报, 2016, 65(22): 224203. doi: 10.7498/aps.65.224203
    [5] 孙波, 吴加贵, 王顺天, 吴正茂, 夏光琼. 基于平行偏振光注入的1550nm波段垂直腔表面发射激光器获取窄线宽光子微波的理论和实验研究. 物理学报, 2016, 65(1): 014207. doi: 10.7498/aps.65.014207
    [6] 钟东洲, 计永强, 邓涛, 周开利. 电光调制对外部光注入垂直腔表面发射激光器的偏振转换及其非线性动力学行为的操控性研究. 物理学报, 2015, 64(11): 114203. doi: 10.7498/aps.64.114203
    [7] 周桢力, 夏光琼, 邓涛, 赵茂戎, 吴正茂. 互注入垂直腔表面发射激光器的多次偏振转换特性研究. 物理学报, 2015, 64(2): 024208. doi: 10.7498/aps.64.024208
    [8] 陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼. 基于双光注入锁定1550 nm垂直腔表面发射半导体激光器产生可调谐毫米波. 物理学报, 2013, 62(10): 104207. doi: 10.7498/aps.62.104207
    [9] 王小发. 光电负反馈下垂直腔表面发射激光器偏振开关特性研究. 物理学报, 2013, 62(10): 104208. doi: 10.7498/aps.62.104208
    [10] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [11] 钟东洲, 吴正茂. 电光调制对外部光反馈垂直腔表面发射激光器输出矢量混沌偏振的操控. 物理学报, 2012, 61(3): 034203. doi: 10.7498/aps.61.034203
    [12] 曹体, 林晓东, 夏光琼, 陈兴华, 吴正茂. 光注入和光电反馈联合作用下垂直腔表面发射激光器的动力学特性研究. 物理学报, 2012, 61(11): 114202. doi: 10.7498/aps.61.114202
    [13] 林晓东, 邓涛, 解宜原, 吴加贵, 陈建国, 吴正茂, 夏光琼. 基于光注入半导体激光器单周期振荡的光子微波产生及全光线宽窄化. 物理学报, 2012, 61(19): 194212. doi: 10.7498/aps.61.194212
    [14] 刘安金, 邢名欣, 渠红伟, 陈微, 周文君, 郑婉华. 光子晶体波导对垂直腔面发射激光器光束远场形貌的调控. 物理学报, 2010, 59(2): 1035-1039. doi: 10.7498/aps.59.1035
    [15] 王宝强, 徐晨, 刘英明, 解意洋, 刘发, 赵振波, 周康, 沈光地. 光子晶体垂直腔面发射激光器的电流分布研究. 物理学报, 2010, 59(12): 8542-8547. doi: 10.7498/aps.59.8542
    [16] 黄雪兵, 夏光琼, 吴正茂. 时变电流注入下光电负反馈垂直腔表面发射激光器的偏振双稳特性. 物理学报, 2010, 59(5): 3066-3069. doi: 10.7498/aps.59.3066
    [17] 宗楠, 崔大复, 李成明, 彭钦军, 许祖彦, 秦莉, 李特, 宁永强, 晏长岭, 王立军. 光抽运垂直扩展腔面发射激光器腔内倍频理论研究. 物理学报, 2009, 58(6): 3903-3908. doi: 10.7498/aps.58.3903
    [18] 王小发, 夏光琼, 吴正茂. 光电负反馈下单向耦合注入垂直腔表面发射激光器的混沌同步特性研究. 物理学报, 2009, 58(7): 4669-4674. doi: 10.7498/aps.58.4669
    [19] 钟东洲, 曹文华, 吴正茂, 夏光琼. 各向异性光反馈注入的垂直表面发射激光器的矢量偏振模转换机理. 物理学报, 2008, 57(3): 1548-1556. doi: 10.7498/aps.57.1548
    [20] 钟东洲, 夏光琼, 王 飞, 吴正茂. 基于光反馈的单向耦合注入垂直腔表面发射激光器的矢量混沌同步特性研究. 物理学报, 2007, 56(6): 3279-3291. doi: 10.7498/aps.56.3279
计量
  • 文章访问数:  4872
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-25
  • 修回日期:  2015-05-29
  • 刊出日期:  2015-10-05

/

返回文章
返回