搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电阻型频率选择表面的宽带雷达超材料吸波体设计

惠忆聪 王春齐 黄小忠

引用本文:
Citation:

基于电阻型频率选择表面的宽带雷达超材料吸波体设计

惠忆聪, 王春齐, 黄小忠

Design and fabrication of broadband radar metamaterial absorber based on the resistor FSS

Hui Yi-Cong, Wang Chun-Qi, Huang Xiao-Zhong
PDF
导出引用
  • 将多边开缝式电阻型频率选择表面 (frequency selective surface, FSS)与传统的磁性吸波材料(radar absorption materials, RAM)复合, 提出了一种新型吸波体模型. 在分析该模型材料结构和拓扑结构的基础上, 得到等效电路模型; 基于传输线理论获得该模型的反射率及输入阻抗. 采用CST仿真软件对电阻型FSS与无电阻型FSS进行对比仿真, 通过分析吸波效率, 结果表明电阻型FSS在8.7 GHz附近具有更加优良的吸波性能, 实物测试结果与仿真结果一致. 同时FSS复合传统的磁性吸波材料RAM 产生了拓频效果, 在8–15 GHz范围内起到全频段吸收.
    In this paper, a kind of composite radar absorption materials, consisting of polygonal and seamed resistor with frequency selective surface (FSS) and traditional magnetic radar absorption materials (RAM), is presented. After analyzing such a material and its topological structure, we obtain the equivalent circuit model of this structure, and acquire the reflectivity and input impedance of such models on the basis of transmission line theory. By the application of CST (computer simulation technology), we have made a comparison between structures with nonresistor and resistor FSS. The structure with resistor FSS has a dual-band whose bandwidths are 0.8 GHz from 8.4 to 9.2 GHz and 0.22 GHz from 11.5 GHz to 11.72 GHz with the reflectivity below-10 dB, respectively. The simulated reflection coefficient for the resistor FSS shows two resonant frequencies at 8.7 and 11.5 GHz which respectively make contribute to a higher absorbing peak reaching-24 dB and-23 dB. However, the nonresistor FSS does not have the absorption peak at 8.7 GHz, and the absorption peak at 11.5 GHz reaches-20 dB, confirming the importance of resistors in improving absorption performance. We have observed which part of such a structure influences amost the bsorption by ascertaining power loss density in the absorbing structure. Based on the current distribution of the FSS, two different schemes of LC equivalent circuits can be modeled, at 8.7 GHz and 11.5 GHz, which can explain the anti-resonance and higher absorbing peak of resistor FSS. Moreover, due to the fact that the induced current increases significantly after adding resistors, we could see that the losses happen when the induced current flows through the resistors, Finally the usage of resistor could improve the absorptive performance of FSS at around 8.7 GHz, this result is coincident with that of simulation. In addition, the combination of resistor FSS and RAM can lead to a frequency-doubling effect, meaning that it has remarkable absorptive performance in the range of 8–15 GHz.
      通信作者: 黄小忠, 13974837493@139.com
    • 基金项目: 国防预研究基金(批准号: 51312040302)和国家高技术研究发展计划(863计划)(批准号: 2014AA7024034, 2014AA7060403)资助的课题.
      Corresponding author: Huang Xiao-Zhong, 13974837493@139.com
    • Funds: Project supported by the National Defense Pre-Research Foundation of China (Grant No. 51312040302), and the National High Technology Research and Development Program of China (Grant Nos. 2014AA7024034, 2014AA7060403).
    [1]

    Schurig D, Mock J J, Justice B J, Cummer SA 2006 Science 314 977

    [2]

    Hadjicosti K, Sydoruk O, Maier S A 2015 Journal of Applied Physic 117 163910

    [3]

    Landy N I, Sajuyigbe S, Mock J J 2008 Physical Review Letters 100 207402

    [4]

    Pang Y Q, Cheng H Y, Zhou Y J, Li Z G, Wang J 2012 Opt. Express 20 12515

    [5]

    Wang Y, Chen Z Y, Gong R Z, Nie Y 2013 Acta Phys. Sin. 62 074101 (in Chinese) [王莹, 程用志, 聂彦, 龚荣洲 2013 物理学报 62 074101]

    [6]

    Wasif Niaz M, Bhatti R A, Majid I 2013 Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology, Islamabad, Pakistan, 15th-19th January, 2013 p424

    [7]

    Viet D T, Hien N T, Tuong P V, Minh N Q, Trang P T, Le L N, Lee Y P, Lam V D 2014 Optics Communications 322 209

    [8]

    Lee J, Yoo M, Lim S 2015 IEEE Transactions on Antennas and Propagation 63 1123

  • [1]

    Schurig D, Mock J J, Justice B J, Cummer SA 2006 Science 314 977

    [2]

    Hadjicosti K, Sydoruk O, Maier S A 2015 Journal of Applied Physic 117 163910

    [3]

    Landy N I, Sajuyigbe S, Mock J J 2008 Physical Review Letters 100 207402

    [4]

    Pang Y Q, Cheng H Y, Zhou Y J, Li Z G, Wang J 2012 Opt. Express 20 12515

    [5]

    Wang Y, Chen Z Y, Gong R Z, Nie Y 2013 Acta Phys. Sin. 62 074101 (in Chinese) [王莹, 程用志, 聂彦, 龚荣洲 2013 物理学报 62 074101]

    [6]

    Wasif Niaz M, Bhatti R A, Majid I 2013 Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology, Islamabad, Pakistan, 15th-19th January, 2013 p424

    [7]

    Viet D T, Hien N T, Tuong P V, Minh N Q, Trang P T, Le L N, Lee Y P, Lam V D 2014 Optics Communications 322 209

    [8]

    Lee J, Yoo M, Lim S 2015 IEEE Transactions on Antennas and Propagation 63 1123

  • [1] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体. 物理学报, 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [2] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [3] 刘海文, 占昕, 任宝平. 射电天文用太赫兹三通带频率选择表面设计. 物理学报, 2015, 64(17): 174103. doi: 10.7498/aps.64.174103
    [4] 张建, 高劲松, 徐念喜, 于淼. 基于混合周期栅网结构的频率选择表面设计研究. 物理学报, 2015, 64(6): 067302. doi: 10.7498/aps.64.067302
    [5] 焦健, 高劲松, 徐念喜, 冯晓国, 胡海翔. 基于传递函数的频率选择表面集总参数研究. 物理学报, 2014, 63(13): 137301. doi: 10.7498/aps.63.137301
    [6] 王岩松, 高劲松, 徐念喜, 汤洋, 陈新. 具有陡降特性的新型混合单元频率选择表面. 物理学报, 2014, 63(7): 078402. doi: 10.7498/aps.63.078402
    [7] 袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷. 一种性能稳定的新型频率选择表面及其微带天线应用. 物理学报, 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [8] 夏步刚, 张德海, 孟进, 赵鑫. 毫米波二阶分形频率选择表面寄生谐振的抑制. 物理学报, 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [9] 王秀芝, 高劲松, 徐念喜. 利用集总LC元件实现频率选择表面极化分离的特性. 物理学报, 2013, 62(14): 147307. doi: 10.7498/aps.62.147307
    [10] 焦健, 徐念喜, 冯晓国, 梁凤超, 赵晶丽, 高劲松. 基于互补屏的主动频率选择表面设计研究. 物理学报, 2013, 62(16): 167306. doi: 10.7498/aps.62.167306
    [11] 王秀芝, 高劲松, 徐念喜. Ku/Ka波段双通带频率选择表面设计研究. 物理学报, 2013, 62(16): 167307. doi: 10.7498/aps.62.167307
    [12] 张建, 高劲松, 徐念喜. 光学透明频率选择表面的设计研究. 物理学报, 2013, 62(14): 147304. doi: 10.7498/aps.62.147304
    [13] 周航, 屈绍波, 彭卫东, 王甲富, 马华, 张东伟, 张介秋, 柏鹏, 徐卓. 一种加载电阻膜吸波材料的新型频率选择表面. 物理学报, 2012, 61(10): 104201. doi: 10.7498/aps.61.104201
    [14] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备. 物理学报, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [15] 陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣. 含有源频率选择表面可调复合吸波体. 物理学报, 2011, 60(7): 074202. doi: 10.7498/aps.60.074202
    [16] 吴翔, 裴志斌, 屈绍波, 徐卓, 柏鹏, 王甲富, 王新华, 周航. 具有极化选择特性的超材料频率选择表面的设计. 物理学报, 2011, 60(11): 114201. doi: 10.7498/aps.60.114201
    [17] 高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红. 二阶Y环频率选择表面的设计研究. 物理学报, 2010, 59(10): 7338-7343. doi: 10.7498/aps.59.7338
    [18] 李小秋, 冯晓国, 高劲松. 光学透明频率选择表面的研究. 物理学报, 2008, 57(5): 3193-3197. doi: 10.7498/aps.57.3193
    [19] 黄 智, 白海洋, 景秀年, 王志新, 王万录. 非晶合金中的低温电阻率极小行为研究. 物理学报, 2004, 53(10): 3457-3461. doi: 10.7498/aps.53.3457
    [20] 佟存柱, 郑萍, 白海洋, 陈兆甲, 雒建林, 张杰, 林德华, 汪卫华. 块体金属玻璃Zr_(48)Nb_8Cu_(12)Fe_8Be_(24)低温电阻的研究. 物理学报, 2002, 51(7): 1559-1563. doi: 10.7498/aps.51.1559
计量
  • 文章访问数:  5824
  • PDF下载量:  510
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-18
  • 修回日期:  2015-06-25
  • 刊出日期:  2015-11-05

/

返回文章
返回