搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于开口谐振环的高增益端射天线设计

刘红喜 高军 曹祥玉 刘艳芳 张迪 李思佳

引用本文:
Citation:

一种基于开口谐振环的高增益端射天线设计

刘红喜, 高军, 曹祥玉, 刘艳芳, 张迪, 李思佳

A design of high-gain end-fire antenna based on split-ring resonator structures

Liu Hong-Xi, Gao Jun, Cao Xiang-Yu, Liu Yan-Fang, Zhang Di, Li Si-Jia
PDF
导出引用
  • 基于开口谐振环(split-ring resonator, SRR)奇异的电磁特性, 设计并制备了一种覆盖C和X波段的高增益SRR-Vivaldi端射天线. 采用等效分析方法对SRR结构谐振特性进行了研究, 并将其应用于传统Vivaldi天线指数渐变槽线前方, 使SRR结构形成特殊谐振能力的引向器, 将天线表面电流集中于端射方向, 在保证天线尺寸和带宽不变的前提下, 实现了天线增益的有效提升. 仿真和测试结果表明, 新型SRR-Vivaldi天线在C波段增益平均提高75.44%, xoy面和xoz面半功率波束宽度都缩减20°以上; 在X波段增益平均提高24.46%, xoz面半功率波束宽度大约缩减25°. 该结构具有低成本、设计简单、便于加工、利于共形等优点, 为端射天线提高增益和增强定向性提供了新思路.
    Vivaldi antennas have wide applications in practice due to the ultra-wide band properties; however, their gain and directivity are relatively low. In this paper, a new method is presented to improve the gain and directivity of Vivaldi antennas in a broad band using split-ring resonator (SRR). Based on the peculiar electromagnetic properties of SRR, a novel high-gain SRR-Vivaldi end-fire antenna in C and X bands is designed and fabricated. The size of the antenna is only 0.33λ ×0.33λ ×0.013λ, a significant miniaturization. Equivalent analysis method has been adopted to study the resonance characteristic of an SRR structure. By adding the SRR structures the singular metamaterials in the front of the Vivaldi antenna have an exponential taper slot, and the SRR structures can play a role as a director which has the ability to enhance the antenna's directivity so that the surface currents will focus on the end-fire direction. The SRR structures have been analyzed, designed, and fabricated, which can be embedded into the original Vivaldi antenna smoothly and compactly. As a result, the gain of the SRR-Vivaldi antenna are enhanced effectively, while the size and bandwidth of the original antenna can be kept, with the reflection coeffcient less than -10 dB from 4 to 13.6 GHz after using SRR. The novel Vivaldi antenna based on the SRR has good features of high gain, high directivity, low return loss and low cross-polarization. Compared to the original Vivaldi antenna, the simulation and measured results demonstrate that the gain of the novel SRR-Vivaldi antenna in C band has been increased by an average value of 75.44% and the half-power beam width has been decreased by 20 degrees in xoy and xoz planes. Meanwhile, the gain has been increased by an average value of 24.46% in X band and the half-power beam width has been decreased by 25 degrees in xoz plane. Testing result of the fabricated antenna demonstrates the reliability of the design. A good agreement between simulations and measurements is obtained. The design owns the merits of low cost, simple design and ease in fabrication and conformation, thus provides a new idea for end-fire antenna gain and directivity improvement. The new antenna has great potentials in applications.
      通信作者: 高军, gjgj9694@163.com
    • 基金项目: 国家自然科学基金(批准号:61271100, 61471389), 陕西省自然科学基础研究计划项目(批准号:2012JM8003)资助的课题.
      Corresponding author: Gao Jun, gjgj9694@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271100, 61471389), the Natural Science Foundation of Shanxi Province, China (Grant No. 2012JM8003).
    [1]

    Jeremie B, Michal O, Elise C F 2010 IEEE Trans. Antennas Propagat 58 2318

    [2]

    Aaron Z H, Tutku K, Erdem T 2008 IEEE Antennas and Wireless Propagation Letter 7 656

    [3]

    Bai J, Shi S Y, Dennis W P 2011 IEEE Trans. Microw. Theory Tech 59 1051

    [4]

    Wang Y W, Wang G M, Yu Z W, Liang J G, Gao X J 2014 IEEE Trans. Antennas Propagat 62 4961

    [5]

    Schaubert D H, Aas J A, Cooley M E 1994 IEEE Trans. Antennas Propagat 42 1161

    [6]

    Zhou B, Li H, Zou X Y, Cui T J 2011 Progress In Electromagnetics Research 120 235

    [7]

    Guntupalli A B, Wu K 2014 IEEE Antennas and Wireless Propagation Letter 13 384

    [8]

    Yeap S B, Chen Z M 2010 IEEE Trans. Antennas Propagat 58 2811

    [9]

    Wu B I, Wang W, Pacheco J, Chen X, Grzegorczyk T M, Kong J A 2005 Progress In Electromagnetics Research 51 295

    [10]

    Chen L, Lei Z Y, Yang R, Fan J, Shi X W 2015 IEEE Trans. Antennas Propagat 63 395

    [11]

    Lovat G, Burghignoli P, Capolino F, Jackson D R, Wilton D R 2006 IEEE Trans. Antennas Propagat 54 1017

    [12]

    Zhou H, Pei Z B, Qu S B, Zhang S, Wang J F, Duan Z S, Ma H, Xu Z 2009 IEEE Antennas and Wireless Propagation Letter 8 538

    [13]

    Cook B S, Shamim A 2013 IEEE Antennas and Wireless Propagation Letter 12 76

    [14]

    Ge Y H, Esselle K P, Bird T S 2012 IEEE Trans. Antennas Propagat 60 743

    [15]

    Prakash P, Abegaonkar M P, Basu A, Koul S K 2013 IEEE Antennas and Wireless Propagation Letter 12 1315

    [16]

    Yuan Z D, Gao J, Cao X Y, Yang H H, Yang Q, Li W Q, Shang K 2014 Acta Phys. Sin. 63 014102 (in Chinese) [袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷 2014 物理学报 63 014102]

    [17]

    Debdeep S, Kumar V S Proceedings of the“2013 International Symposium on Electromagnetic Theory”. Hiroshima, Japan, May 20-23, 2013 p466

    [18]

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese) [赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 物理学报 62 154204]

    [19]

    Liu H W, Zhu S S, Wen P, Qin F, Ren B P, Xiao X, Hou X Y 2015 Acta Phys. Sin. 64 038108 (in Chinese) [刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇 2015 物理学报 64 038108]

    [20]

    Ding C F, Zhang Y T, Yao J Q, Sun C L, Xu D G, Zhang G Z 2014 Chin. Phys. B 23 124203

    [21]

    Tang W X, Zhao H, Zhou X, Chin J Y, Cui T J 2008 Progress In Electromagnetics Research B 8 103

    [22]

    Bahl I, Bhartia P (translated by Zheng X) 2006 Microwave Solid State Circuit Design (Vol. 2) (Beijing: Publishing House of Electronics Industry) pp53-80 (in Chinese) [(美)巴尔, 巴希尔著(郑新译) 2006 微波固态电路设计(北京: 电子工业版社)第 53–80 页]

    [23]

    Marques R, Mesa F, Martel J, Medina F 2003 IEEE Trans. Antennas Propag 51 2572

  • [1]

    Jeremie B, Michal O, Elise C F 2010 IEEE Trans. Antennas Propagat 58 2318

    [2]

    Aaron Z H, Tutku K, Erdem T 2008 IEEE Antennas and Wireless Propagation Letter 7 656

    [3]

    Bai J, Shi S Y, Dennis W P 2011 IEEE Trans. Microw. Theory Tech 59 1051

    [4]

    Wang Y W, Wang G M, Yu Z W, Liang J G, Gao X J 2014 IEEE Trans. Antennas Propagat 62 4961

    [5]

    Schaubert D H, Aas J A, Cooley M E 1994 IEEE Trans. Antennas Propagat 42 1161

    [6]

    Zhou B, Li H, Zou X Y, Cui T J 2011 Progress In Electromagnetics Research 120 235

    [7]

    Guntupalli A B, Wu K 2014 IEEE Antennas and Wireless Propagation Letter 13 384

    [8]

    Yeap S B, Chen Z M 2010 IEEE Trans. Antennas Propagat 58 2811

    [9]

    Wu B I, Wang W, Pacheco J, Chen X, Grzegorczyk T M, Kong J A 2005 Progress In Electromagnetics Research 51 295

    [10]

    Chen L, Lei Z Y, Yang R, Fan J, Shi X W 2015 IEEE Trans. Antennas Propagat 63 395

    [11]

    Lovat G, Burghignoli P, Capolino F, Jackson D R, Wilton D R 2006 IEEE Trans. Antennas Propagat 54 1017

    [12]

    Zhou H, Pei Z B, Qu S B, Zhang S, Wang J F, Duan Z S, Ma H, Xu Z 2009 IEEE Antennas and Wireless Propagation Letter 8 538

    [13]

    Cook B S, Shamim A 2013 IEEE Antennas and Wireless Propagation Letter 12 76

    [14]

    Ge Y H, Esselle K P, Bird T S 2012 IEEE Trans. Antennas Propagat 60 743

    [15]

    Prakash P, Abegaonkar M P, Basu A, Koul S K 2013 IEEE Antennas and Wireless Propagation Letter 12 1315

    [16]

    Yuan Z D, Gao J, Cao X Y, Yang H H, Yang Q, Li W Q, Shang K 2014 Acta Phys. Sin. 63 014102 (in Chinese) [袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷 2014 物理学报 63 014102]

    [17]

    Debdeep S, Kumar V S Proceedings of the“2013 International Symposium on Electromagnetic Theory”. Hiroshima, Japan, May 20-23, 2013 p466

    [18]

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese) [赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 物理学报 62 154204]

    [19]

    Liu H W, Zhu S S, Wen P, Qin F, Ren B P, Xiao X, Hou X Y 2015 Acta Phys. Sin. 64 038108 (in Chinese) [刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇 2015 物理学报 64 038108]

    [20]

    Ding C F, Zhang Y T, Yao J Q, Sun C L, Xu D G, Zhang G Z 2014 Chin. Phys. B 23 124203

    [21]

    Tang W X, Zhao H, Zhou X, Chin J Y, Cui T J 2008 Progress In Electromagnetics Research B 8 103

    [22]

    Bahl I, Bhartia P (translated by Zheng X) 2006 Microwave Solid State Circuit Design (Vol. 2) (Beijing: Publishing House of Electronics Industry) pp53-80 (in Chinese) [(美)巴尔, 巴希尔著(郑新译) 2006 微波固态电路设计(北京: 电子工业版社)第 53–80 页]

    [23]

    Marques R, Mesa F, Martel J, Medina F 2003 IEEE Trans. Antennas Propag 51 2572

  • [1] 赵振宇, 刘海文, 陈智娇, 董亮, 常乐, 高萌英. 基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计. 物理学报, 2022, 71(4): 044101. doi: 10.7498/aps.71.20211914
    [2] 赵振宇, 刘海文, 陈智娇, 董亮, 常乐, 高萌英. 基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211914
    [3] 赵宇婷, 李迎松, 杨国辉. 基于电路模拟吸收体的宽带吸波型频率选择表面设计. 物理学报, 2020, 69(19): 198101. doi: 10.7498/aps.69.20200641
    [4] 韩亚娟, 张介秋, 李勇峰, 王甲富, 屈绍波, 张安学. 基于微波表面等离激元的360电扫描多波束天线. 物理学报, 2016, 65(14): 147301. doi: 10.7498/aps.65.147301
    [5] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [6] 刘海文, 占昕, 任宝平. 射电天文用太赫兹三通带频率选择表面设计. 物理学报, 2015, 64(17): 174103. doi: 10.7498/aps.64.174103
    [7] 袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷. 一种性能稳定的新型频率选择表面及其微带天线应用. 物理学报, 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [8] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [9] 刁志辉, 黄文彬, 邓舒鹏, 刘永刚, 彭增辉, 姚丽双, 宣丽. 基于低散射和高增益全息液晶/聚合物光栅的分布反馈式激光器. 物理学报, 2013, 62(3): 034202. doi: 10.7498/aps.62.034202
    [10] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [11] 吴洋, 许州, 徐勇, 金晓, 常安碧, 李正红, 黄华, 刘忠, 罗雄, 马乔生, 唐传祥. 低功率驱动的高功率微波放大器实验研究. 物理学报, 2011, 60(4): 044102. doi: 10.7498/aps.60.044102
    [12] 樊京, 蔡广宇. 一种基于旋转调谐的超材料. 物理学报, 2010, 59(12): 8574-8578. doi: 10.7498/aps.59.8574
    [13] 樊京, 蔡广宇. 一种基于金属开口谐振环和杆阵列的左手材料宽带吸收器. 物理学报, 2010, 59(9): 6084-6088. doi: 10.7498/aps.59.6084
    [14] 杨锐, 谢拥军, 李晓峰, 蒋俊, 王元源, 王瑞. 异向介质谐振响应的Floquet模分析. 物理学报, 2009, 58(2): 901-907. doi: 10.7498/aps.58.901
    [15] 杨 锐, 谢拥军, 王元源, 傅焕展. 加载异向介质非辐射介质波导中的慢波传输及应用. 物理学报, 2008, 57(9): 5513-5518. doi: 10.7498/aps.57.5513
    [16] 施 卫, 王馨梅, 侯 磊, 徐 鸣, 刘 峥. 高增益双层组合GaAs光电导开关设计与实验研究. 物理学报, 2008, 57(11): 7185-7189. doi: 10.7498/aps.57.7185
    [17] 艾 芬, 白 洋, 徐 芳, 乔利杰, 周 济. 基于铁氧体基板的开口谐振环的可调微波左手特性研究. 物理学报, 2008, 57(7): 4189-4194. doi: 10.7498/aps.57.4189
    [18] 张富利, 赵晓鹏. 谐振频率可调的环状开口谐振器结构及其效应. 物理学报, 2007, 56(8): 4661-4667. doi: 10.7498/aps.56.4661
    [19] 姚 远, 赵晓鹏, 赵 晶, 周 欣. 非对称开口六边形谐振单环的微波透射特性. 物理学报, 2006, 55(12): 6435-6440. doi: 10.7498/aps.55.6435
    [20] 康 雷, 赵 乾, 赵晓鹏. 二维负磁导率材料中的缺陷效应. 物理学报, 2004, 53(10): 3379-3383. doi: 10.7498/aps.53.3379
计量
  • 文章访问数:  6543
  • PDF下载量:  414
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-08
  • 修回日期:  2015-07-31
  • 刊出日期:  2015-12-05

/

返回文章
返回