搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化硅膜致小尺寸金属氧化物半导体晶体管沟道单轴应变物理机理

杨旻昱 宋建军 张静 唐召唤 张鹤鸣 胡辉勇

引用本文:
Citation:

氮化硅膜致小尺寸金属氧化物半导体晶体管沟道单轴应变物理机理

杨旻昱, 宋建军, 张静, 唐召唤, 张鹤鸣, 胡辉勇

Physical mechanism of uniaxial strain in nano-scale metal oxide semiconductor transistor caused by sin film

Yang Min-Yu, Song Jian-Jun, Zhang Jing, Tang Zhao-Huan, Zhang He-Ming, Hu Hui-Yong
PDF
导出引用
  • 应力作用下MOS性能可显著提升, 小尺寸MOS沟道中单轴应力的引入可通过在MOS表面覆盖淀积SiN膜实现. 虽然该工艺已广泛应用于MOS性能的提升, 但有关SiN膜致MOS沟道应力的产生机理、作用机理, 以及SiN膜结构与MOS沟道应力类型关联性等方面的研究仍需深入探讨. 本文基于ISE TCAD仿真, 提出了分段分析、闭环分析和整体性分析三种模型. 通过对Si MOS源、栅、漏上多种SiN膜淀积形式的深入分析, 揭示了SiN膜致MOS 沟道应力产生与作用物理机理. 研究发现: 1) “台阶”结构是SiN膜导致MOS沟道应变的必要条件; 2) SiN膜具有收缩或者扩张的趋势, SiN膜主要通过引起MOS源/漏区域Si材料的形变, 进而引起沟道区Si材料发生形变; 3)整体SiN膜对沟道的应力等于源/漏上方SiN膜在源/漏所施加的应力、“闭环结构”对沟道内部所施加的应力以及SiN膜的完整性在沟道产生的应力的总和. 本文物理模型可为小尺寸MOS工艺制造, 以及MOS器件新型应力引入的研究提供有价值的参考.
    Performance of a nano-scale MOS (metal-oxide-semiconductor) can be significantly improved by uniaxial stress, caused by the SiN film deposited on the surface of MOS. Although this technique has been widely used in the performance improvement of CMOS and integrated circuit, the physical mechanism for instance, how is the strain in MOS channel caused by the SiN film? how about the relation between the kinds of the structure of SiN film needed to be discussed in depth. On the basis of the ISE TCAD, three typical models for stress analysis——such as the segmentation structure model, the closed-loop structure model and the integrity structure model——are proposed. And then, this paper reveals the physical mechanism about how the stress in MOS channel is caused by the SiN film and how much the magnitude of the stress in MOS channel is induced. Results shows that: 1) The “step” structure is the necessary condition for the strain in the MOS channel to be caused by the SiN film. 2) With the tendency for SiN film to shrink or expand, the film may lead to the deformation along the MOS source/drain region of the Si material, which causes the deformation of Si in the channel. 3) The whole of the channel stress in SiN film is equal to the sum of the stress in the source/drain imposed by the SiN film above the source/drain, the stress which the “closed loop structure” applies to the channel, and the stress generated in the channel by the whole SiN film. Our conclusions may provide the valuable references to the manufacture of nano-scaled MOS and the research of the novel inducing stress technique.
      通信作者: 杨旻昱, minyu_muyi@qq.com
    • 基金项目: 模拟集成电路重点实验室基金(批准号: P140c090303110c0904)和陕西省自然科学基础研究计(批准号: 2014JQ8329)资助的课题.
      Corresponding author: Yang Min-Yu, minyu_muyi@qq.com
    • Funds: Project supported by the National key Laboratory of Analog Integrated Circuitry (Grant No. P140c090303110c0904), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2014JQ8329).
    [1]

    Bai M, Xuan R X, Song J J, Zhang H M, Hu H Y, Shu B 2015 J. Comput Theor Nanos 12 1610

    [2]

    Wu W R, Liu Ch, Sun J B, Yu W J, Wang X, Shi Y, Zhao Y 2014 IEEE Electr Device L 35 714

    [3]

    Liu W F, Song J J 2014 Acta Phys. Sin. 63 238501 (in Chinese) [刘伟峰, 宋建军 2014 物理学报 63 238501]

    [4]

    Cai W L, Takenaka M, Takagi S 2014 J. Appl. Phys. 115 094509

    [5]

    Song J J, Yang Ch, Zhu H, Zhang H M, Xu R X, Hu H Y, Shu B 2014 Acta Phys. Sin. 63 118501 (in Chinese) [宋建军, 杨超, 朱贺, 张鹤鸣, 宣荣喜, 胡辉勇, 舒斌 2014 物理学报 63 118501]

    [6]

    EngSiew K A, Sohail I R 2013 J Comput Theor Nanos 10 1231

    [7]

    Song J J, Yang Ch, Wang G Y, Zhou Ch Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys. 51 104301

    [8]

    Song J J, Zhang H M, Hu H Y, Dian X Y, Xuan R X 2007 Chin. Phys. B 16 3827

    [9]

    Song J J, Zhang H M, Hu H Y, Wang X Y, Wang G Y 2012 Sci. China Phys. Mech. 55 1399

    [10]

    Song J J, Zhang H M, Hu H Y, Wang X Y, Wang G Y 2012 Acta Phys. Sin. 61 057304 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇 2012 物理学报 61 057304]

    [11]

    Huang J, Chang Sh T, Hsieh B F, Liao M H, Wang W C, Lee C C 2010 Thin Solid Films 518 241

    [12]

    Yamashita T, Nishida Y, Okagaki T, Miyagawa Y 2008 Jpn. J. Appl. Phys. 47 2569

    [13]

    Huang, H L, Chen J K, Houng M P 2013 Solid State Electron 79 31

    [14]

    Sentaurus TCAD, G2012-06 Manual, Synopsys, Inc., Mountain View, CA, USA, 2012

  • [1]

    Bai M, Xuan R X, Song J J, Zhang H M, Hu H Y, Shu B 2015 J. Comput Theor Nanos 12 1610

    [2]

    Wu W R, Liu Ch, Sun J B, Yu W J, Wang X, Shi Y, Zhao Y 2014 IEEE Electr Device L 35 714

    [3]

    Liu W F, Song J J 2014 Acta Phys. Sin. 63 238501 (in Chinese) [刘伟峰, 宋建军 2014 物理学报 63 238501]

    [4]

    Cai W L, Takenaka M, Takagi S 2014 J. Appl. Phys. 115 094509

    [5]

    Song J J, Yang Ch, Zhu H, Zhang H M, Xu R X, Hu H Y, Shu B 2014 Acta Phys. Sin. 63 118501 (in Chinese) [宋建军, 杨超, 朱贺, 张鹤鸣, 宣荣喜, 胡辉勇, 舒斌 2014 物理学报 63 118501]

    [6]

    EngSiew K A, Sohail I R 2013 J Comput Theor Nanos 10 1231

    [7]

    Song J J, Yang Ch, Wang G Y, Zhou Ch Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys. 51 104301

    [8]

    Song J J, Zhang H M, Hu H Y, Dian X Y, Xuan R X 2007 Chin. Phys. B 16 3827

    [9]

    Song J J, Zhang H M, Hu H Y, Wang X Y, Wang G Y 2012 Sci. China Phys. Mech. 55 1399

    [10]

    Song J J, Zhang H M, Hu H Y, Wang X Y, Wang G Y 2012 Acta Phys. Sin. 61 057304 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇 2012 物理学报 61 057304]

    [11]

    Huang J, Chang Sh T, Hsieh B F, Liao M H, Wang W C, Lee C C 2010 Thin Solid Films 518 241

    [12]

    Yamashita T, Nishida Y, Okagaki T, Miyagawa Y 2008 Jpn. J. Appl. Phys. 47 2569

    [13]

    Huang, H L, Chen J K, Houng M P 2013 Solid State Electron 79 31

    [14]

    Sentaurus TCAD, G2012-06 Manual, Synopsys, Inc., Mountain View, CA, USA, 2012

计量
  • 文章访问数:  4538
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-12
  • 修回日期:  2015-08-14
  • 刊出日期:  2015-12-05

/

返回文章
返回