搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无衍射特殊光束的产生与三维表征

于湘华 姚保利 雷铭 严绍辉 杨延龙 李润泽 蔡亚楠

引用本文:
Citation:

无衍射特殊光束的产生与三维表征

于湘华, 姚保利, 雷铭, 严绍辉, 杨延龙, 李润泽, 蔡亚楠

Generation and three-dimensional characterization of complex nondiffracting optical beams

Yu Xiang-Hua, Yao Bao-Li, Lei Ming, Yan Shao-Hui, Yang Yan-Long, Li Run-Ze, Cai Ya-Nan
PDF
导出引用
  • 无衍射光束(如贝塞尔光束、艾里光束)因具有无衍射、自愈合的特性, 在很多领域都有广泛的应用. 本文提出使用纯相位型空间光调制器对光场的复振幅进行调控, 从而可以产生多种复杂模式的无衍射光束, 如强度可独立调控的多个零阶贝塞尔光束, 两个高阶贝塞尔光束干涉生成的花瓣状无衍射光束, 具有多个主瓣的加速光束等特殊的无衍射光束. 通过在待测焦场附近放置一个平面反射镜, 使其沿光轴快速扫描光场, 并由数字相机同步拍摄反射回来的一系列二维光场强度分布信息, 可实现对无衍射光束三维光场强度分布的快速测量和表征. 本实验方法和技术可以快速产生各种复杂的特殊光场并获得其精确的三维可视化重建效果, 在光学显微、光学俘获、光学微加工等领域有潜在的应用价值.
    Nondiffracting optical beams play an important role in contemporary optics due to their special propagation characteristics, i.e., nondiffracting in a diffraction-free zone, shape recovering behind obstacles or self-healing property. Liquid crystal spatial light modulators (LC-SLM) are widely used for generating nondiffracting optical beams in virtue of programmable and dynamic features. In this paper, we propose a complex amplitude modulation technique that can encode any scalar complex fields for generating the complex nondiffracting beams. Before experiment, the phase modulation curve of the phase-only LC-SLM is optimized into being linear in a range of 0-2πby gamma correction in the way of variable binary phase gratings. Then, we experimentally generate the nonaccelerating beams, e.g., two zero-order Bessel beams with variable intensity distributions, and the nondiffracting petal-like beams generated by interfering with two coaxial Bessel beams. By scanning a reflection mirror near the focal region along the optical axis, a stack of two-dimensional images is acquired, and then a three-dimensional intensity profile of the beam is reconstructed with a software. We also experimentally demonstrate a new kind of multi-main-lobe accelerating beam with parabolic accelerating trajectory by modifying the spatial spectrum of classical Airy beam. Compared with the so-called vectorial accelerating beam with multiple main lobes in spheroidal coordinates, our generated two-main-lobe accelerating beam has a very high energy efficiency. The self-healing property of the two-main-lobe accelerating beam is also demonstrated. The presented technique can generate a variety of complex nondiffracting optical beams rapidly and obtain their three-dimensional intensity distributions accurately, which has potential applications in the fields of optical microscope, optical date storage, optical trapping, optical micromachining, etc.
      通信作者: 姚保利, yaobl@opt.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB921900)和国家自然科学基金(批准号: 81427802, 61275193)资助的课题.
      Corresponding author: Yao Bao-Li, yaobl@opt.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921900) and the National Natural Science Foundation of China (Grant Nos. 81427802, 61275193).
    [1]

    Durnin J, Miceli J, Eberly H 1987 Phys. Rev. Lett. 58 1499

    [2]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [3]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [4]

    Grier D G 2003 Nature 424 810

    [5]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [6]

    Ran L L, Guo Z Y, Qu S L 2012 Chin. Phys. B 21 104206

    [7]

    Zhao M, Zhang H, Li Y, Ashok A, Liang R, Zhou W, Peng L 2014 Biomed. Opt. Express 5 1296

    [8]

    Jia S, Vaughan J C, Zhuang X 2014 Nat. Photon. 8 302

    [9]

    Faccio D, Rubino E, Lotti A, Couairon A, Dubietis A, Tamosauskas G, Papazoglou D G, Tzortzakis S 2012 Phys. Rev. A 85 033829

    [10]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229

    [11]

    Yu X, Yao B, Lei M, Hampp N, Liang Y, Dan D, Yang Y, Yan S, Gao P, Ye T 2014 Appl. Phys. B 115 365

    [12]

    Mathis A, Courvoisier F, Froehly L, Furfaro L, Jacquot M, Lacourt P A, Dudley J M 2012 Appl. Phys. Lett. 101 071110

    [13]

    Chattrapiban N, Rogers E A, Cofield D, Hill T W, Roy R 2003 Opt. Lett. 28 2183

    [14]

    Zhang P, Hu Y, Li T, Cannan D, Yin X, Morandotti R, Chen Z, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [15]

    Yu X H, Yao B L, Li X Y, Liu S L, Lei M, Li R Z, Liang Y S, Zhou X, Wu D, Dan D, Min J W, Yan S H 2015 Acta Phys. Sin. 64 024218 (in Chinese) [于湘华, 姚保利, 李新宇, 刘石磊, 雷铭, 李润泽, 梁言生, 周兴, 吴迪, 但旦, 闵俊伟, 严绍辉 2015 物理学报 64 024218]

    [16]

    Davis J A, Cottrell D M, Campos J, Yzuel M J, Moreno I 1999 Appl. Opt. 38 5004

    [17]

    Arrizon V, Ruiz U, Carrada R, Gonzalez L A 2007 J. Opt. Soc. Am. A 24 3500

    [18]

    Zhu L, Wang J 2014 Sci. Rep. 4 7441

    [19]

    Theisen M J, Head S T, Brown T G, Cillmer S R, Ellis J D 2014 Proc. SPIE 8949 8949x

    [20]

    Ando T, Ohtake Y, Matsumoto N, Inoue T, Fukuchi N 2009 Opt. Lett. 34 34

    [21]

    Han W, Yang Y, Cheng W, Zhan Q 2013 Opt. Express 21 20692

    [22]

    Suzaki Y, Tachibana A 1975 Appl. Opt. 14 2809

    [23]

    Bauer T, Orlov S, Peschel U, Banzer P, Leuchs G 2014 Nat. Photon. 8 23

    [24]

    Radwell N, Boukhet M A, Franke-Arnold S 2013 Opt. Express 21 22215

    [25]

    Roichman Y, Cholis I, Grier D G 2006 Opt. Express 14 10907

    [26]

    Shanblatt E R, Grier D G 2011 Opt. Express 19 5833

    [27]

    Engstrom D, Persson M, Bengtsson J, Goksor M 2013 Opt. Express 21 16086

    [28]

    Lei M, Yao B, Rupp R A 2006 Opt. Express 14 5803

    [29]

    Yan S, Li M, Yao B, Yu X, Lei M, Dan D, Yang Y, Min J, Peng T 2015 Phys. Lett. A 379 983

    [30]

    Aleahmad P, Miri M A, Mills M S, Kaminer I 2012 Phys. Rev. Lett. 109 203902

    [31]

    Alonso M A, Bandres M A 2012 Opt. Lett. 37 5175

  • [1]

    Durnin J, Miceli J, Eberly H 1987 Phys. Rev. Lett. 58 1499

    [2]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [3]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [4]

    Grier D G 2003 Nature 424 810

    [5]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [6]

    Ran L L, Guo Z Y, Qu S L 2012 Chin. Phys. B 21 104206

    [7]

    Zhao M, Zhang H, Li Y, Ashok A, Liang R, Zhou W, Peng L 2014 Biomed. Opt. Express 5 1296

    [8]

    Jia S, Vaughan J C, Zhuang X 2014 Nat. Photon. 8 302

    [9]

    Faccio D, Rubino E, Lotti A, Couairon A, Dubietis A, Tamosauskas G, Papazoglou D G, Tzortzakis S 2012 Phys. Rev. A 85 033829

    [10]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229

    [11]

    Yu X, Yao B, Lei M, Hampp N, Liang Y, Dan D, Yang Y, Yan S, Gao P, Ye T 2014 Appl. Phys. B 115 365

    [12]

    Mathis A, Courvoisier F, Froehly L, Furfaro L, Jacquot M, Lacourt P A, Dudley J M 2012 Appl. Phys. Lett. 101 071110

    [13]

    Chattrapiban N, Rogers E A, Cofield D, Hill T W, Roy R 2003 Opt. Lett. 28 2183

    [14]

    Zhang P, Hu Y, Li T, Cannan D, Yin X, Morandotti R, Chen Z, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [15]

    Yu X H, Yao B L, Li X Y, Liu S L, Lei M, Li R Z, Liang Y S, Zhou X, Wu D, Dan D, Min J W, Yan S H 2015 Acta Phys. Sin. 64 024218 (in Chinese) [于湘华, 姚保利, 李新宇, 刘石磊, 雷铭, 李润泽, 梁言生, 周兴, 吴迪, 但旦, 闵俊伟, 严绍辉 2015 物理学报 64 024218]

    [16]

    Davis J A, Cottrell D M, Campos J, Yzuel M J, Moreno I 1999 Appl. Opt. 38 5004

    [17]

    Arrizon V, Ruiz U, Carrada R, Gonzalez L A 2007 J. Opt. Soc. Am. A 24 3500

    [18]

    Zhu L, Wang J 2014 Sci. Rep. 4 7441

    [19]

    Theisen M J, Head S T, Brown T G, Cillmer S R, Ellis J D 2014 Proc. SPIE 8949 8949x

    [20]

    Ando T, Ohtake Y, Matsumoto N, Inoue T, Fukuchi N 2009 Opt. Lett. 34 34

    [21]

    Han W, Yang Y, Cheng W, Zhan Q 2013 Opt. Express 21 20692

    [22]

    Suzaki Y, Tachibana A 1975 Appl. Opt. 14 2809

    [23]

    Bauer T, Orlov S, Peschel U, Banzer P, Leuchs G 2014 Nat. Photon. 8 23

    [24]

    Radwell N, Boukhet M A, Franke-Arnold S 2013 Opt. Express 21 22215

    [25]

    Roichman Y, Cholis I, Grier D G 2006 Opt. Express 14 10907

    [26]

    Shanblatt E R, Grier D G 2011 Opt. Express 19 5833

    [27]

    Engstrom D, Persson M, Bengtsson J, Goksor M 2013 Opt. Express 21 16086

    [28]

    Lei M, Yao B, Rupp R A 2006 Opt. Express 14 5803

    [29]

    Yan S, Li M, Yao B, Yu X, Lei M, Dan D, Yang Y, Min J, Peng T 2015 Phys. Lett. A 379 983

    [30]

    Aleahmad P, Miri M A, Mills M S, Kaminer I 2012 Phys. Rev. Lett. 109 203902

    [31]

    Alonso M A, Bandres M A 2012 Opt. Lett. 37 5175

  • [1] 魏祥, 吴智政, 曹战, 王园园, DzikiMbemba. 基于磁液变形镜生成弯曲轨迹自加速类贝塞尔光束. 物理学报, 2019, 68(11): 114701. doi: 10.7498/aps.68.20190063
    [2] 林书庆, 江宁, 王超, 胡少华, 李桂兰, 薛琛鹏, 刘雨倩, 邱昆. 基于动态混沌映射的三维加密正交频分复用无源光网络. 物理学报, 2018, 67(2): 028401. doi: 10.7498/aps.67.20171246
    [3] 刘会龙, 胡总华, 夏菁, 吕彦飞. 无衍射光束的产生及其应用. 物理学报, 2018, 67(21): 214204. doi: 10.7498/aps.67.20181227
    [4] 杜闯, 贾大功, 张红霞, 刘铁根, 张以谟. 环形光束锥形衍射出射光场偏振特性及光场调控. 物理学报, 2017, 66(12): 124202. doi: 10.7498/aps.66.124202
    [5] 王吉明, 赫崇君, 刘友文, 杨凤, 田威, 吴彤. 基于可调谐复振幅滤波器的超长焦深矢量光场. 物理学报, 2016, 65(4): 044202. doi: 10.7498/aps.65.044202
    [6] 施建珍, 许田, 周巧巧, 纪宪明, 印建平. 用波晶片相位板产生角动量可调的无衍射涡旋空心光束. 物理学报, 2015, 64(23): 234209. doi: 10.7498/aps.64.234209
    [7] 李冬, 吴逢铁, 谢晓霞, 孙川. 无衍射 Mathieu光束自重建特性的理论和实验研究. 物理学报, 2015, 64(1): 014201. doi: 10.7498/aps.64.014201
    [8] 谢晓霞, 王硕琛, 吴逢铁. Bessel光束经椭圆环形孔径后的衍射光场. 物理学报, 2015, 64(12): 124201. doi: 10.7498/aps.64.124201
    [9] 潘雪梅, 孟祥锋, 杨修伦, 王玉荣, 彭翔, 何文奇, 董国艳, 陈红艺. 基于复振幅场信息复用和RSA算法的非对称多幅图像认证方法. 物理学报, 2015, 64(11): 110701. doi: 10.7498/aps.64.110701
    [10] 刘绩林, 陈子阳, 张磊, 蒲继雄. 角向偏振无衍射光束的传输特性及其偏振态研究. 物理学报, 2015, 64(6): 064201. doi: 10.7498/aps.64.064201
    [11] 李冬, 吴逢铁, 谢晓霞. 基于轴棱锥产生近似无衍射Mathieu光束的新方法. 物理学报, 2014, 63(15): 152401. doi: 10.7498/aps.63.152401
    [12] 杜团结, 王涛, 吴逢铁. 轴棱锥对无衍射光束的线聚焦特性. 物理学报, 2013, 62(13): 134103. doi: 10.7498/aps.62.134103
    [13] 范丹丹, 吴逢铁, 程治明, 朱健强. 非相干光源无衍射光的自重建. 物理学报, 2013, 62(10): 104219. doi: 10.7498/aps.62.104219
    [14] 辛璟焘, 高春清, 李辰, 王铮. 螺旋光束经过振幅型衍射光学元件的传输特性及其拓扑电荷数的测量. 物理学报, 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [15] 范丹丹, 张前安, 程治明, 郑维涛, 吴逢铁. Bessel光束自重建的模拟仿真与实验验证. 物理学报, 2012, 61(16): 164103. doi: 10.7498/aps.61.164103
    [16] 卢文和, 吴逢铁, 马宝田. 环形障碍物-轴棱锥产生局域空心光束. 物理学报, 2010, 59(9): 6101-6105. doi: 10.7498/aps.59.6101
    [17] 宋洪胜, 程传福, 滕树云, 刘曼, 刘桂媛, 张宁玉. 参考光干涉提取复振幅的散斑统计函数的实验研究. 物理学报, 2009, 58(11): 7654-7661. doi: 10.7498/aps.58.7654
    [18] 吴逢铁, 江新光, 刘彬, 邱振兴. 轴棱锥产生无衍射光束自再现特性的几何光学分析. 物理学报, 2009, 58(5): 3125-3129. doi: 10.7498/aps.58.3125
    [19] 彭润伍, 范滇元. 洛仑兹脉冲光束的复振幅包络解和复解析信号解的比较研究. 物理学报, 2005, 54(6): 2680-2685. doi: 10.7498/aps.54.2680
    [20] 周光辉, 文根旺. 无反射势的Schr?dinger方程严格解的三维推广. 物理学报, 1993, 42(3): 345-350. doi: 10.7498/aps.42.345
计量
  • 文章访问数:  5384
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-16
  • 修回日期:  2015-08-03
  • 刊出日期:  2015-12-05

/

返回文章
返回