搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池正极材料Li2FeSiO4的电子结构与输运特性

马昊 刘磊 路雪森 刘素平 师建英

引用本文:
Citation:

锂离子电池正极材料Li2FeSiO4的电子结构与输运特性

马昊, 刘磊, 路雪森, 刘素平, 师建英

Electronic structure and transport properties of cathode material Li2FeSiO4 for lithium-ion battery

Ma Hao, Liu Lei, Lu Xue-Sen, Liu Su-Ping, Shi Jian-Ying
PDF
导出引用
  • 采用基于密度泛函理论第一性原理方法, 研究了对称性为Pmn21的正交结构聚阴离子型硅酸盐Li2FeSiO4及其相关脱锂相LiFeSiO4的电子结构, 并进一步采用玻尔兹曼理论对其输运性质进行计算. 电荷密度分析表明, 由于强Si–O共价键的存在使Li2FeSiO4晶体结构在嵌脱锂过程中始终保持稳定, 体积变化率只有2.7%. 能带结构与态密度计算结果表明, 费米能级附近的电子结构主要受Fe-d轨道中电子的影响, Li2FeSiO4 的带隙宽度明显小于LiFeSiO4, 说明前者的电子输运能力优于后者. 输运性质计算表明, 电导率在300–800 K时对温度的变化并不敏感, 同时也证明了Li2FeSiO4晶体的电导率大于LiFeSiO4晶体, 与能带和态密度分析结论一致.
    The electronic structure and properties of silicate polyanion Li2FeSiO4 in the orthorhombic crystal structure with Pmn21 symmetry and the relevant delithiated system LiFeSiO4 are investigated by the first principles method in the framework of the density functional theory with the generalized gradient approximation. The WIEN2k software is used for the self-consistent calculation of the crystal structure to obtain the energy band, density of states, and charge density. Boltzmann transport theory is further used to obtain the values of ratio σ /τ of Li2FeSiO4 and LiFeSiO4 based on the results of the first-principles calculations. The structural stability of Li2FeSiO4 system is demonstrated by calculating and analyzing the lattice parameter and the bond length. The results indicate that Li2FeSiO4 crystal has only 2.7% volume variation in the lithiation/delithiation process and the change of the Si–O bond length is very small, which suggests that the bonding nature between silicon and oxygen atoms remains unchanged. The results of charge density analysis show that the structural stability of Li2FeSiO4 crystal during lithium deintercalation is actually a consequence of a strong covalent interaction between silicon and oxygen atoms. An analysis of density of states shows that the density in the high-energy range near the Fermi level mainly comes from Fe-3d electron states. The Fermi level moves towards the lower energy end during the deintercalation of lithium ions and the electronic conductivity decreases with the decreasing of lithium ions, indicating that the conductive properties of Li2FeSiO4 are better than those of LiFeSiO4. It suggests that Li2FeSiO4 could be modified by doping atoms to affect the electrons in orbital Fe-3d and enhance conductive properties in future research. The calculations of transport properties show that the electronic conductivity of Li2FeSiO4 is not sensitive to temperature in a range from 300 to 800 K, and Li2FeSiO4 material is a potential candidate for heat-resisting cathode material. It also indicates that Li2FeSiO4 owns a better electronic conductivity than LiFeSiO4, which is consistent with the analyses of band structure and density of states. This research reveals the microscopic mechanism such as electronic structure and electronic transport properties of Li2FeSiO4 crystal in theoretical calculations, and provides a theoretical basis for the further improvement of electrochemical properties of lithium-ion battery.
      通信作者: 刘磊, thesisliu@163.com
    • 基金项目: 国家自然科学基金(批准号: 61204079)、河北省自然科学基金(批准号: F2013201196)和河北省青年拔尖人才计划(2013)资助的课题.
      Corresponding author: Liu Lei, thesisliu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61204079), the Natural Science Foundation of Hebei Province, China (Grant No. F2013201196), and the Youth Outstanding Talent Project of Hebei Province, China (2013).
    [1]

    Idota Y, Kuboat T, Matsufuji A, Maekawa Y, Miyasaka T 1997 Science 276 1395

    [2]

    Yue J L, Zhou Y N, Shi S Q, Shadike Z, Huang X Q, Luo J, Yang Z Z, Li H, Gu L, Yang X Q, Fu Z W 2015 Sci. Rep. 5 8810

    [3]

    Huang X J 2015 Physics 44 1 (in Chinese) [黄学杰 2015 物理 44 1]

    [4]

    Zhang S, Li W J, Ling S G, Li H, Zhou Z B, Chen L Q 2015 Chin. Phys. B 24 078201

    [5]

    Wu W, Jiang F M, Zeng J B 2014 Acta Phys. Sin. 63 048202 (in Chinese) [吴伟, 蒋方明, 曾建邦 2014 物理学报 63 048202]

    [6]

    Chen Y C, Xie K, Pan Y, Zheng C M, Wang H L 2011 Chin. Phys. B 20 028201

    [7]

    Meng Y S, Arroyo-de Dompablo M E 2013 Acc. Chem. Res. 46 1171

    [8]

    Xin X G, Shen J Q, Shi S Q 2012 Chin. Phys. B 21 128202

    [9]

    Wang Z X, Chen L Q, Huang X J 2011 Prog. Chem. 23 284 (in Chinese) [王兆翔, 陈立泉, 黄学杰 2011 化学进展 23 284]

    [10]

    Ru Q, Hu S J, Zhao L Z 2011 Acta Phys. Sin. 60 036301 (in Chinese) [汝强, 胡社军, 赵灵智 2011 物理学报 60 036301]

    [11]

    Dou J Q, Kang X Y, Turtdi W, Hua N, Han Y 2012 Acta Phys. Sin. 61 087101 (in Chinese) [窦俊青, 康雪雅, 吐尔迪 · 吾买尔, 华宁, 韩英 2012 物理学报 61 087101]

    [12]

    Shi S Q, Liu L J, Ouyang C Y, Wang D S, Wang Z X, Chen L Q, Huang X J 2003 Phys. Rev. B 68 195108

    [13]

    Zhang H, Tang Y H, Shen J Q, Xin X G, Cui L X, Chen L J, Ouyang C Y, Shi S Q, Chen L Q 2011 Appl. Phys. A 104 529

    [14]

    Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 Phys. Rev. B 69 104303

    [15]

    Shi S Q, Zhang H, Ke X Z, Ouyang C Y, Lei M S, Chen L Q 2009 Phys. Lett. A 373 4096

    [16]

    Arroyo-de Dompablo M E, Armand M, Tarascon J M, Amador U 2006 Electrochem. Commun. 8 1292

    [17]

    Araujo R B, Scheicher R H, Almeida J S D, Silva A F D, Ahuja R 2013 Solid State Ionics 173 9

    [18]

    Liivat A, Thomas J O 2011 Solid State Ionics 192 58

    [19]

    Armstrong A R, Kuganathan N, Islam M S, Bruce P G 2011 J. Am. Chem. Soc. 133 13031

    [20]

    Nytén A, Kamali S, Häggström L, Gustafsson T, Thomas J O 2006 J. Mater. Chem. 16 2266

    [21]

    Jugović D, Uskoković D 2009 J. Power Source 190 538

    [22]

    Islam M S, Dominko R, Masquelier C, Sirisopanaporn C, Armstrong A R, Bruce P G 2011 J. Mater. Chem. 21 9811

    [23]

    Lv D P, Bai J Y, Zhang P, Wu S Q, Li Y X, Wen W, Jiang Z, Mi J X, Zhu Z Z, Yang Y 2013 Chem. Mater. 25 2014

    [24]

    Larsson P, Ahuja R, Nytén A, Thomas J O 2006 Electrochem. Commun. 8 797

    [25]

    Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas J O 2005 Electrochem. Commun. 7 156

    [26]

    Nishimura S, Hayase S, Kanno R, Yashima M, Nakayama N, Yamada A 2008 J. Am. Chem. Soc. 130 13212

    [27]

    Blaha P, Schwarz K, Sorantin P, Trickey S B 1990 Comput. Phys. Commun. 59 399

    [28]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67

  • [1]

    Idota Y, Kuboat T, Matsufuji A, Maekawa Y, Miyasaka T 1997 Science 276 1395

    [2]

    Yue J L, Zhou Y N, Shi S Q, Shadike Z, Huang X Q, Luo J, Yang Z Z, Li H, Gu L, Yang X Q, Fu Z W 2015 Sci. Rep. 5 8810

    [3]

    Huang X J 2015 Physics 44 1 (in Chinese) [黄学杰 2015 物理 44 1]

    [4]

    Zhang S, Li W J, Ling S G, Li H, Zhou Z B, Chen L Q 2015 Chin. Phys. B 24 078201

    [5]

    Wu W, Jiang F M, Zeng J B 2014 Acta Phys. Sin. 63 048202 (in Chinese) [吴伟, 蒋方明, 曾建邦 2014 物理学报 63 048202]

    [6]

    Chen Y C, Xie K, Pan Y, Zheng C M, Wang H L 2011 Chin. Phys. B 20 028201

    [7]

    Meng Y S, Arroyo-de Dompablo M E 2013 Acc. Chem. Res. 46 1171

    [8]

    Xin X G, Shen J Q, Shi S Q 2012 Chin. Phys. B 21 128202

    [9]

    Wang Z X, Chen L Q, Huang X J 2011 Prog. Chem. 23 284 (in Chinese) [王兆翔, 陈立泉, 黄学杰 2011 化学进展 23 284]

    [10]

    Ru Q, Hu S J, Zhao L Z 2011 Acta Phys. Sin. 60 036301 (in Chinese) [汝强, 胡社军, 赵灵智 2011 物理学报 60 036301]

    [11]

    Dou J Q, Kang X Y, Turtdi W, Hua N, Han Y 2012 Acta Phys. Sin. 61 087101 (in Chinese) [窦俊青, 康雪雅, 吐尔迪 · 吾买尔, 华宁, 韩英 2012 物理学报 61 087101]

    [12]

    Shi S Q, Liu L J, Ouyang C Y, Wang D S, Wang Z X, Chen L Q, Huang X J 2003 Phys. Rev. B 68 195108

    [13]

    Zhang H, Tang Y H, Shen J Q, Xin X G, Cui L X, Chen L J, Ouyang C Y, Shi S Q, Chen L Q 2011 Appl. Phys. A 104 529

    [14]

    Ouyang C Y, Shi S Q, Wang Z X, Huang X J, Chen L Q 2004 Phys. Rev. B 69 104303

    [15]

    Shi S Q, Zhang H, Ke X Z, Ouyang C Y, Lei M S, Chen L Q 2009 Phys. Lett. A 373 4096

    [16]

    Arroyo-de Dompablo M E, Armand M, Tarascon J M, Amador U 2006 Electrochem. Commun. 8 1292

    [17]

    Araujo R B, Scheicher R H, Almeida J S D, Silva A F D, Ahuja R 2013 Solid State Ionics 173 9

    [18]

    Liivat A, Thomas J O 2011 Solid State Ionics 192 58

    [19]

    Armstrong A R, Kuganathan N, Islam M S, Bruce P G 2011 J. Am. Chem. Soc. 133 13031

    [20]

    Nytén A, Kamali S, Häggström L, Gustafsson T, Thomas J O 2006 J. Mater. Chem. 16 2266

    [21]

    Jugović D, Uskoković D 2009 J. Power Source 190 538

    [22]

    Islam M S, Dominko R, Masquelier C, Sirisopanaporn C, Armstrong A R, Bruce P G 2011 J. Mater. Chem. 21 9811

    [23]

    Lv D P, Bai J Y, Zhang P, Wu S Q, Li Y X, Wen W, Jiang Z, Mi J X, Zhu Z Z, Yang Y 2013 Chem. Mater. 25 2014

    [24]

    Larsson P, Ahuja R, Nytén A, Thomas J O 2006 Electrochem. Commun. 8 797

    [25]

    Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas J O 2005 Electrochem. Commun. 7 156

    [26]

    Nishimura S, Hayase S, Kanno R, Yashima M, Nakayama N, Yamada A 2008 J. Am. Chem. Soc. 130 13212

    [27]

    Blaha P, Schwarz K, Sorantin P, Trickey S B 1990 Comput. Phys. Commun. 59 399

    [28]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67

  • [1] 冉沛林, 吴康, 赵恩岳, 王芳卫, 毋志民. 通过Mo掺杂诱导低Li/Ni混排程度增强Li1.2Ni0.13Fe0.13Mn0.54O2可逆容量与循环稳定性. 物理学报, 2024, 73(2): 028201. doi: 10.7498/aps.73.20231361
    [2] 许伟良, 党荣彬, 杨佯, 郭秋卜, 丁飞翔, 韩帅, 唐小涵, 刘渊, 左战春, 王晓琦, 杨瑞, 金旭, 容晓晖, 洪捐, 许宁, 胡勇胜. Mg掺杂提升钠离子电池正极材料高电压循环性能. 物理学报, 2023, 72(5): 058802. doi: 10.7498/aps.72.20222098
    [3] 丁飞翔, 容晓晖, 王海波, 杨佯, 胡紫霖, 党荣彬, 陆雅翔, 胡勇胜. 钠离子层状氧化物材料相变及其对性能的影响. 物理学报, 2022, 71(10): 108801. doi: 10.7498/aps.71.20220291
    [4] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [5] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211619
    [6] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [7] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [8] 陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜. 室温钠离子电池材料及器件研究进展. 物理学报, 2018, 67(12): 120601. doi: 10.7498/aps.67.20180847
    [9] 彭颖吒, 张锴, 郑百林, 李泳. 广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析. 物理学报, 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [10] 李娟, 汝强, 胡社军, 郭凌云. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究. 物理学报, 2014, 63(16): 168201. doi: 10.7498/aps.63.168201
    [11] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [12] 吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军. 硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究. 物理学报, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [13] 窦俊青, 康雪雅, 吐尔迪·吾买尔, 华宁, 韩英. Mn掺杂LiFePO4的第一性原理研究. 物理学报, 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [14] 刘相, 谢凯, 郑春满, 王军. 不同气氛下裂解含苯环聚硅氧烷制备锂离子电池Si-O-C复合负极材料的电池性能研究. 物理学报, 2011, 60(11): 118202. doi: 10.7498/aps.60.118202
    [15] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [16] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [17] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [18] 李佳, 杨传铮, 张熙贵, 张建, 夏保佳. 石墨/Li(Ni1/3Co1/3Mn1/3)O2电池充放电过程中电极材料的XRD研究. 物理学报, 2009, 58(9): 6573-6581. doi: 10.7498/aps.58.6573
    [19] 侯贤华, 胡社军, 李伟善, 赵灵智, 余洪文, 谭春林. Li-Sn合金负极材料的嵌脱锂机理研究. 物理学报, 2008, 57(4): 2374-2379. doi: 10.7498/aps.57.2374
    [20] 侯柱锋, 刘慧英, 朱梓忠, 黄美纯, 杨 勇. 锂离子电池负极材料CuSn的Li嵌入性质的研究. 物理学报, 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
计量
  • 文章访问数:  6496
  • PDF下载量:  339
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-06
  • 修回日期:  2015-09-01
  • 刊出日期:  2015-12-05

/

返回文章
返回