搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平行偏振光注入的1550nm波段垂直腔表面发射激光器获取窄线宽光子微波的理论和实验研究

孙波 吴加贵 王顺天 吴正茂 夏光琼

引用本文:
Citation:

基于平行偏振光注入的1550nm波段垂直腔表面发射激光器获取窄线宽光子微波的理论和实验研究

孙波, 吴加贵, 王顺天, 吴正茂, 夏光琼

Theoretical and experimental investigation on the narrow-linewidth photonic microwave generation based on parallel polarized optically injected 1550 nm vertical-cavity surface-emitting laser

Sun Bo, Wu Jia-Gui, Wang Shun-Tian, Wu Zheng-Mao, Xia Guang-Qiong
PDF
导出引用
  • 提出一种基于1550 nm垂直腔表面发射激光器(1550 nm-VCSEL)获取高质量微波信号的全光方案. 在该方案中, 采用波长位于VCSEL中被抑制模式的中心波长附近、振动方向与VCSEL中主导模式相同的偏振光注入(即平行注入) 1550 nm-VCSEL获取高频微波, 并借助双光反馈对该高频微波的线宽进行窄化. 一方面, 基于VCSEL的自旋反转模型, 从理论上分析了采用该方案产生微波信号的可行性; 另一方面, 通过构建相应的实验系统, 对该方案产生的微波的特性进行初步实验研究. 实验结果表明: 在合适的注入条件下, 1550 nm-VCSEL能够产生30 GHz左右的微波信号, 但该信号的线宽较宽(百兆水平); 引入双光反馈后, 微波线宽可被压窄两个数量级以上, 得到了线宽低于1 MHz、信噪比大于40 dB的微波信号.
    Photonic microwave generation has attracted much attention in recent years due to its potential applications in various fields such as radio-over-fiber communication, signal processing and radar systems. So far, different photonic microwave generation schemes have been proposed and investigated, such as the optical heterodyne method based on the beat of two independent lasers with a certain wavelength difference, the external modulation method based on electro-optical modulator, the dual-mode beat method based on the monolithic dual-mode semiconductor lasers, and the optoelectronic microwave oscillator method based on optoelectronic feedback loops. These schemes have their own advantages and deficiencies. Unlike the above schemes, in this paper we propose an all optical scheme for generating high-quality microwave based on a 1550 nm vertical-cavity surface-emitting laser (1550 nm-VCSEL). For such a scheme, high frequency microwave can be obtained based on a 1550 nm-VCSEL subjected to external optical injection, where the polarization of the injected light is the same as that of the dominant mode of the free-running 1550 nm-VCSEL (named parallel-polarized optical injection) and its wavelength is adjusted to being close to the wavelength of the suppressed polarization mode of the free-running 1550 nm-VCSEL. With the aid of double optical feedback, the linewidth of the obtained microwave can be narrowed. In this work, firstly, the feasibility of microwave generation based on parallel-polarized optically injected 1550 nm-VCSEL is analyzed theoretically by using the spin-flip model. Next, a corresponding experimental system is constructed, and the performance of microwave generation is preliminarily investigated experimentally. The experimental results show that 30 GHz microwave signals could be obtained based on a parallel-polarized, optically injected 1550 nm-VCSEL under suitable injection parameters, but the linewidth of microwave signal is relatively wide (hundreds of MHz). Finally, after introducing double optical feedback, the linewidth of microwave signal can be reduced by more than two orders of magnitude and narrowed to less than 1 MHz, meanwhile the signal-noise ratio is larger than 40 dB. This work is helpful to develop relevant techniques to acquire high-performance narrow linewidth photonic microwave.
      通信作者: 吴加贵, mgh@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61178011, 61275116, 61475127, 11474233, 61575163)、重庆市高等学校青年骨干教师资助计划(批准号: 102060-20600512)和中央高校基本科研业务费专项资金(批准号: XDJK2013B037, SWU114004)资助的课题.
      Corresponding author: Wu Jia-Gui, mgh@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178011, 61275116, 61475127, 11474233, 61575163), the Foundation of Chongqing College Key Yung Teachers, China (Grant No. 102060-20600512), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. XDJK2013B037, SWU114004).
    [1]

    Yao J P 2009 J. Lightw. Technol. 27 314

    [2]

    Qi X Q, Liu J M 2011 IEEE J. Sel. Top. Quantum Electron. 17 1198

    [3]

    Pan B W, Lu D, Sun Y, Yu L Q, Zhang L M, Zhao L J 2014 Opt. Lett. 39 6395

    [4]

    Hyodo M, Abedin K S, Onodera N 1999 Opt. Commun. 171 159

    [5]

    Han J, Seo B J, Han Y, Jalali B, Fetterman H R 2003 J. Lightw. Technol. 21 1504

    [6]

    Liu W S, Jiang M, Chen D, He S L 2009 J. Lightw. Technol. 27 4455

    [7]

    Hwang S K, Liu J M, White J K 2004 IEEE J. Sel. Top. Quantum Electron. 10 974

    [8]

    Chan S C, Liu J M 2006 IEEE J. Quantum Electron. 42 699

    [9]

    Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921

    [10]

    Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241 (in Chinese) [牛生晓, 王云才, 贺虎成, 张明江 2009 物理学报 58 7241]

    [11]

    Chan S C 2010 IEEE J. Quantum Electron. 46 421

    [12]

    Juan Y S, Lin F Y 2011 IEEE Photon. J. 3 644

    [13]

    Liao Y H, Lin F Y 2013 Opt. Express 21 23568

    [14]

    Fan L, Wu Z M, Deng T, Wu J G, Tan X, Chen J J, Mao S, Xia G Q 2014 J. Light. Technol. 32 4660

    [15]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [16]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [17]

    Altes J B, Gatare I, Panajotov K, Thienpont H, Sciamanna M 2006 IEEE J. Quantum Electron. 42 198

    [18]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [19]

    Li N Q, Pan W, Yan L S, Luo B, Xu M F, Jiang N 2011 Chin. Phys. B 20 060502

    [20]

    Jiang N, Pan W, Luo B, Xiang S Y, Yang L 2012 IEEE Photon. Technol. Lett. 24 1094

    [21]

    Xiang S Y, Pan W, Li N Q, Yan L S, Luo B, Zhang L Y, Zhu H N 2013 IEEE J. Quantum Electron. 49 274

    [22]

    Quirce A, Valle A 2012 Opt. Express 20 13390

    [23]

    Chen Y L, Wu Z M, Tang X, Lin X D, Wei Y, Xia G Q 2013 Acta Phys. Sin. 62 104207 (in Chinese) [陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼 2013 物理学报 62 104207]

    [24]

    Perez P, Quirce A, Valle A, Consoli A, Noriega I, Pesquera L, Esquivias I 2015 IEEE Photon. J. 7 5500614

    [25]

    Gatare I, Sciamanna M, Locquet A, Panajotov K 2007 Opt. Lett. 32 1629

    [26]

    Seyab R A, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242

    [27]

    Torre M S, Hurtado A, Quirce A, Valle A, Pesquera L, Adams M J 2011 IEEE J. Quantum Electron. 47 92

    [28]

    Sciamanna M, Panajotov K 2006 Phys. Rev. A 73 023811

    [29]

    Chan S C, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 1025

  • [1]

    Yao J P 2009 J. Lightw. Technol. 27 314

    [2]

    Qi X Q, Liu J M 2011 IEEE J. Sel. Top. Quantum Electron. 17 1198

    [3]

    Pan B W, Lu D, Sun Y, Yu L Q, Zhang L M, Zhao L J 2014 Opt. Lett. 39 6395

    [4]

    Hyodo M, Abedin K S, Onodera N 1999 Opt. Commun. 171 159

    [5]

    Han J, Seo B J, Han Y, Jalali B, Fetterman H R 2003 J. Lightw. Technol. 21 1504

    [6]

    Liu W S, Jiang M, Chen D, He S L 2009 J. Lightw. Technol. 27 4455

    [7]

    Hwang S K, Liu J M, White J K 2004 IEEE J. Sel. Top. Quantum Electron. 10 974

    [8]

    Chan S C, Liu J M 2006 IEEE J. Quantum Electron. 42 699

    [9]

    Chan S C, Hwang S K, Liu J M 2007 Opt. Express 15 14921

    [10]

    Niu S X, Wang Y C, He H C, Zhang M J 2009 Acta Phys. Sin. 58 7241 (in Chinese) [牛生晓, 王云才, 贺虎成, 张明江 2009 物理学报 58 7241]

    [11]

    Chan S C 2010 IEEE J. Quantum Electron. 46 421

    [12]

    Juan Y S, Lin F Y 2011 IEEE Photon. J. 3 644

    [13]

    Liao Y H, Lin F Y 2013 Opt. Express 21 23568

    [14]

    Fan L, Wu Z M, Deng T, Wu J G, Tan X, Chen J J, Mao S, Xia G Q 2014 J. Light. Technol. 32 4660

    [15]

    Miguel M S, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [16]

    Regalado J M, Prati F, Miguel M S, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [17]

    Altes J B, Gatare I, Panajotov K, Thienpont H, Sciamanna M 2006 IEEE J. Quantum Electron. 42 198

    [18]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [19]

    Li N Q, Pan W, Yan L S, Luo B, Xu M F, Jiang N 2011 Chin. Phys. B 20 060502

    [20]

    Jiang N, Pan W, Luo B, Xiang S Y, Yang L 2012 IEEE Photon. Technol. Lett. 24 1094

    [21]

    Xiang S Y, Pan W, Li N Q, Yan L S, Luo B, Zhang L Y, Zhu H N 2013 IEEE J. Quantum Electron. 49 274

    [22]

    Quirce A, Valle A 2012 Opt. Express 20 13390

    [23]

    Chen Y L, Wu Z M, Tang X, Lin X D, Wei Y, Xia G Q 2013 Acta Phys. Sin. 62 104207 (in Chinese) [陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼 2013 物理学报 62 104207]

    [24]

    Perez P, Quirce A, Valle A, Consoli A, Noriega I, Pesquera L, Esquivias I 2015 IEEE Photon. J. 7 5500614

    [25]

    Gatare I, Sciamanna M, Locquet A, Panajotov K 2007 Opt. Lett. 32 1629

    [26]

    Seyab R A, Schires K, Khan N A, Hurtado A, Henning I D, Adams M J 2011 IEEE J. Sel. Top. Quantum Electron. 17 1242

    [27]

    Torre M S, Hurtado A, Quirce A, Valle A, Pesquera L, Adams M J 2011 IEEE J. Quantum Electron. 47 92

    [28]

    Sciamanna M, Panajotov K 2006 Phys. Rev. A 73 023811

    [29]

    Chan S C, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 1025

  • [1] 麻艳娜, 王文睿, 宋开臣, 于晋龙, 马闯, 张华芳. 基于双波长时域合成技术的微波光子波形产生. 物理学报, 2019, 68(17): 174203. doi: 10.7498/aps.68.20190151
    [2] 王小发, 吴正茂, 夏光琼. 光反馈诱发长波长垂直腔面发射激光器低功耗偏振开关. 物理学报, 2016, 65(2): 024204. doi: 10.7498/aps.65.024204
    [3] 陈俊, 陈建军, 吴正茂, 蒋波, 夏光琼. 可变偏振光注入下1550nm垂直腔面发射激光器的偏振开关及双稳特性. 物理学报, 2016, 65(16): 164204. doi: 10.7498/aps.65.164204
    [4] 张华芳, 王文睿, 于晋龙, 王菊, 杨恩泽. 基于偏振延时干涉技术的光子波形产生技术研究. 物理学报, 2016, 65(22): 224203. doi: 10.7498/aps.65.224203
    [5] 钟东洲, 计永强, 邓涛, 周开利. 电光调制对外部光注入垂直腔表面发射激光器的偏振转换及其非线性动力学行为的操控性研究. 物理学报, 2015, 64(11): 114203. doi: 10.7498/aps.64.114203
    [6] 周桢力, 夏光琼, 邓涛, 赵茂戎, 吴正茂. 互注入垂直腔表面发射激光器的多次偏振转换特性研究. 物理学报, 2015, 64(2): 024208. doi: 10.7498/aps.64.024208
    [7] 周娅, 吴正茂, 樊利, 孙波, 何洋, 夏光琼. 基于椭圆偏振光注入垂直腔表面发射激光器的正交偏振模式单周期振荡产生两路光子微波. 物理学报, 2015, 64(20): 204203. doi: 10.7498/aps.64.204203
    [8] 王小发, 李骏. 短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性研究. 物理学报, 2014, 63(1): 014203. doi: 10.7498/aps.63.014203
    [9] 陈于淋, 吴正茂, 唐曦, 林晓东, 魏月, 夏光琼. 基于双光注入锁定1550 nm垂直腔表面发射半导体激光器产生可调谐毫米波. 物理学报, 2013, 62(10): 104207. doi: 10.7498/aps.62.104207
    [10] 王小发. 光电负反馈下垂直腔表面发射激光器偏振开关特性研究. 物理学报, 2013, 62(10): 104208. doi: 10.7498/aps.62.104208
    [11] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [12] 钟东洲, 吴正茂. 电光调制对外部光反馈垂直腔表面发射激光器输出矢量混沌偏振的操控. 物理学报, 2012, 61(3): 034203. doi: 10.7498/aps.61.034203
    [13] 曹体, 林晓东, 夏光琼, 陈兴华, 吴正茂. 光注入和光电反馈联合作用下垂直腔表面发射激光器的动力学特性研究. 物理学报, 2012, 61(11): 114202. doi: 10.7498/aps.61.114202
    [14] 林晓东, 邓涛, 解宜原, 吴加贵, 陈建国, 吴正茂, 夏光琼. 基于光注入半导体激光器单周期振荡的光子微波产生及全光线宽窄化. 物理学报, 2012, 61(19): 194212. doi: 10.7498/aps.61.194212
    [15] 丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂. 双光反馈半导体激光混沌系统中外腔延时反馈特征的抑制. 物理学报, 2011, 60(1): 014210. doi: 10.7498/aps.60.014210
    [16] 黄雪兵, 夏光琼, 吴正茂. 时变电流注入下光电负反馈垂直腔表面发射激光器的偏振双稳特性. 物理学报, 2010, 59(5): 3066-3069. doi: 10.7498/aps.59.3066
    [17] 宗楠, 崔大复, 李成明, 彭钦军, 许祖彦, 秦莉, 李特, 宁永强, 晏长岭, 王立军. 光抽运垂直扩展腔面发射激光器腔内倍频理论研究. 物理学报, 2009, 58(6): 3903-3908. doi: 10.7498/aps.58.3903
    [18] 王小发, 夏光琼, 吴正茂. 光电负反馈下单向耦合注入垂直腔表面发射激光器的混沌同步特性研究. 物理学报, 2009, 58(7): 4669-4674. doi: 10.7498/aps.58.4669
    [19] 钟东洲, 曹文华, 吴正茂, 夏光琼. 各向异性光反馈注入的垂直表面发射激光器的矢量偏振模转换机理. 物理学报, 2008, 57(3): 1548-1556. doi: 10.7498/aps.57.1548
    [20] 钟东洲, 夏光琼, 王 飞, 吴正茂. 基于光反馈的单向耦合注入垂直腔表面发射激光器的矢量混沌同步特性研究. 物理学报, 2007, 56(6): 3279-3291. doi: 10.7498/aps.56.3279
计量
  • 文章访问数:  5201
  • PDF下载量:  269
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-25
  • 修回日期:  2015-09-07
  • 刊出日期:  2016-01-05

/

返回文章
返回