搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于石墨烯的超宽带吸波器

姜彦南 王扬 葛德彪 李思敏 曹卫平 高喜 于新华

引用本文:
Citation:

一种基于石墨烯的超宽带吸波器

姜彦南, 王扬, 葛德彪, 李思敏, 曹卫平, 高喜, 于新华

An ultra-wideband absorber based on graphene

Jiang Yan-Nan, Wang Yang, Ge De-Biao, Li Si-Min, Cao Wei-Ping, Gao Xi, Yu Xin-Hua
PDF
导出引用
  • 隐身技术对降低飞行器目标的雷达散射截面、提高飞行器目标的生存能力具有重要的意义和价值, 而在飞行器目标上引入吸波器结构是一种重要的隐身手段. 然而, 目前已有吸波器的研究主要集中在单频或多频窄带方面. 为了拓展吸波器工作频带, 基于石墨烯材料提出了一种工作于S/C波段的新型超宽带吸波器模型单元, 其中包含一个用石墨烯材料设计的方圆形双环周期结构. 调节石墨烯的表面阻抗, 使得吸收率超过90%的频带范围为2.1-9.0 GHz, 相对带宽约为124%, 实现了超宽带的吸波特性; 鉴于模型的高度对称性, 提出的吸波器模型表现出对入射波极化不敏感的吸波特性; 在不改变模型结构情况下, 调节石墨烯的静态偏置电场, 亦可调控吸波器谐振在2.0-9.0 GHz频带范围内的任意频率点处, 且达到超过99%的吸收效果. 最后采用等效电路模型方法和波的干涉理论对其吸波机理进行深入研究与分析: 从等效电路角度来讲, 方形和圆形环分别引入高、低吸波谐振频率, 二者优化叠加拓展了吸波带宽; 从干涉理论方面来看, 吸波器表面处的首次反射波与透射波的多次出射波形成较强的干涉相消现象, 有效减少了吸波器的反射回波.
    Stealth technology is of great importance and significance in reducing the radar cross section and improving the survivability of the target aircraft. Absorber is one of the most important structures in stealth technology. However, the present investigations of absorbers mainly focus on the narrow band or multi-band. To extend the operation bandwidth, a graphene-based absorber structure is proposed in this paper. The proposed absorber has a periodic structure whose unit cell consists of a square and a circular graphene-based ring. The surface impedance of the periodic structure can be optimized to match the impedance of the free space in a very wide band by adjusting the electrostatic bias voltage. Then the operation band is significantly extended. By using the commercial software, CST Microwave Studio 2014, the performance of the proposed absorber is studied. The simulated results show that the proposed absorber can absorb electromagnetic (EM) waves in an ultra-wideband from 2.1 to 9.0 GHz, with an absorbing rate of up to 90%. Moreover, the proposed absorber is insensitive to the polarization of the incident wave due to the symmetry of the structure. We also find that the absorber can be tuned to work at any frequency in a range from 2.0 to 9.0 GHz for a fixed geometrical parameter. The equivalent circuit model (ECM) approach and interference theory (INF) are employed to investigate the physical mechanism of the proposed absorber. According to the ECM, we analyze the resonant characteristics of the square and circular graphene rings. Owing to the existence of two different graphene rings, two resonant frequencies are detected. By optimizing the structure parameters of the graphene rings, the two resonant frequencies are brought closer, resulting in the increase of the operation band. On the other hand, the real part of the input impedance of the equivalent circuit reaches up to about 300 Ω and the imaginary part is close to 0 Ω, which provides good matching to the free space, leading to high absorption rate. According to the interference theory, the amplitudes and phases of the direct reflection and the multiple reflections of EM waves are studied. It is found that the destructive interference between the direct reflection and multiple reflection makes the absorber have high performance in an ultra-wideband. The results obtained from ECM and INF are in good agreement with the simulation ones.
      通信作者: 姜彦南, ynjiang@guet.edu.cn.
    • 基金项目: 国家自然科学基金(批准号: 61361005, 61461016, 61161002, 61561013)、广西自然科学基金(批准号: 2014GXNSFAA118283, 2014GXNSFAA118366, 2015GXNSFAA139305)、桂林电子科技大学创新团队和认知无线电与信息处理省部共建教育部重点实验室(桂林电子科技大学)主任基金资助的课题.
      Corresponding author: Jiang Yan-Nan, ynjiang@guet.edu.cn.
    • Funds: Project supported by the Natural Science Foundation of China (Grant Nos. 61361005, 61461016, 61161002, 61561013), the Natural Science Foundation of Guangxi, China(Grant Nos. 2014GXNSFAA118283, 2014GXNSFAA118366, 2015GXNSFAA139305), the Program for Innovative Research Team of Guilin University of Electronic Technology (IRTGUET), and the Director Fund of Key Laboratory of Cognitive Radio and Information Processing (Guilin University of Electronic Technology), Ministry of Education.
    [1]

    Fante R L, McCormack M T 1988 IEEE Trans. Antennas. Propag. 36 1443

    [2]

    Toit L J D 1994 IEEE Antennas. Propag. Mag. 36 17

    [3]

    Landy N, Sajuyigbe S, Mock J 2008 Phys. Rev. Lett. 100 207402

    [4]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Zhai X, Li X F 2014 Opt. Commun. 325 78

    [5]

    Li L Y, Wang J, Du H L, Wang J F, Qu S B 2015 Chin. Phys. B 24 064201

    [6]

    Gu C, Qu S B, Pei Z B, Xu Z, Ma H, Lin B Q, Bai P, Peng W D 2011 Acta Phys. Sin. 60 107801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东 2011 物理学报 60 107801]

    [7]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [8]

    Agarwal S, Prajapati Y K, Singh V, Saini J P 2015 Opt. Commun. 356 565

    [9]

    Geim A K, Novoselov K S 2007 Nature. Mater. 63 183

    [10]

    Geim A K 2009 Science 324 1530

    [11]

    Sensale-Rodriguez B, Yan R, Kelly M 2012 Nature Commun. 3 780

    [12]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017

    [13]

    Fallahi A, Perruisseau-Carrier J 2012 Phys. Rev. B 86 195408

    [14]

    Sensale-Rodriguez B, Yan R, Rafique S, Zhu M, Li W, Liang X, Gundlach D, Protasenko V, Kelly M M, Jena D, Liu L, Xing H G 2012 Nano Lett. 12 4518

    [15]

    Vakil A, Engheta N 2011 Science 332 1291

    [16]

    Nayyeri V, Soleimani M, Ramahi O M 2013 IEEE Trans. Antennas. Propag. 61 4176

    [17]

    Avitzour Y, Yaroslav A, Urzhumov, Shvels G 2009 Phys. Rev. B 79 045131

    [18]

    Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2014 Opt. Express 22 22743

    [19]

    Langley R J Parker E A 1982 Electron. Lett. 18 294

    [20]

    Langley R J Parker E A 1983 Electron. Lett. 19 675

    [21]

    Costa F, Monorchio A, Manara G 2010 IEEE Trans. Antennas. Propag. 58 1551

    [22]

    Costa F, Monorchio A, Manara G 2009 IEEE Antennas Propag. Society Int. Symp Charleston, June, 2009 p781

    [23]

    Luukkonen O, Simovski C, Granet G, Goussetis G, Lioubtchenko D, Raisanen A V, Tretyakov S A 2008 IEEE Trans. Antennas. Propag. 56 1624

    [24]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas. Propag. 63 3522

    [25]

    Chen H T, Zhou J F, John F O, Frank C, Abul K A, Antoinette J T 2010 Phys. Rev. Lett. 105 073901

    [26]

    Chen H T 2012 Opt. Express 20 7165

  • [1]

    Fante R L, McCormack M T 1988 IEEE Trans. Antennas. Propag. 36 1443

    [2]

    Toit L J D 1994 IEEE Antennas. Propag. Mag. 36 17

    [3]

    Landy N, Sajuyigbe S, Mock J 2008 Phys. Rev. Lett. 100 207402

    [4]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Zhai X, Li X F 2014 Opt. Commun. 325 78

    [5]

    Li L Y, Wang J, Du H L, Wang J F, Qu S B 2015 Chin. Phys. B 24 064201

    [6]

    Gu C, Qu S B, Pei Z B, Xu Z, Ma H, Lin B Q, Bai P, Peng W D 2011 Acta Phys. Sin. 60 107801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东 2011 物理学报 60 107801]

    [7]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [8]

    Agarwal S, Prajapati Y K, Singh V, Saini J P 2015 Opt. Commun. 356 565

    [9]

    Geim A K, Novoselov K S 2007 Nature. Mater. 63 183

    [10]

    Geim A K 2009 Science 324 1530

    [11]

    Sensale-Rodriguez B, Yan R, Kelly M 2012 Nature Commun. 3 780

    [12]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017

    [13]

    Fallahi A, Perruisseau-Carrier J 2012 Phys. Rev. B 86 195408

    [14]

    Sensale-Rodriguez B, Yan R, Rafique S, Zhu M, Li W, Liang X, Gundlach D, Protasenko V, Kelly M M, Jena D, Liu L, Xing H G 2012 Nano Lett. 12 4518

    [15]

    Vakil A, Engheta N 2011 Science 332 1291

    [16]

    Nayyeri V, Soleimani M, Ramahi O M 2013 IEEE Trans. Antennas. Propag. 61 4176

    [17]

    Avitzour Y, Yaroslav A, Urzhumov, Shvels G 2009 Phys. Rev. B 79 045131

    [18]

    Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2014 Opt. Express 22 22743

    [19]

    Langley R J Parker E A 1982 Electron. Lett. 18 294

    [20]

    Langley R J Parker E A 1983 Electron. Lett. 19 675

    [21]

    Costa F, Monorchio A, Manara G 2010 IEEE Trans. Antennas. Propag. 58 1551

    [22]

    Costa F, Monorchio A, Manara G 2009 IEEE Antennas Propag. Society Int. Symp Charleston, June, 2009 p781

    [23]

    Luukkonen O, Simovski C, Granet G, Goussetis G, Lioubtchenko D, Raisanen A V, Tretyakov S A 2008 IEEE Trans. Antennas. Propag. 56 1624

    [24]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas. Propag. 63 3522

    [25]

    Chen H T, Zhou J F, John F O, Frank C, Abul K A, Antoinette J T 2010 Phys. Rev. Lett. 105 073901

    [26]

    Chen H T 2012 Opt. Express 20 7165

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] 万震, 李成, 刘宇健, 宋学锋, 樊尚春. 石墨烯谐振式力学量传感器研究进展. 物理学报, 2022, 71(12): 126801. doi: 10.7498/aps.71.20220215
    [3] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [4] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [5] 蒲晓庆, 吴静, 郭强, 蔡建臻. 石墨烯与金属的欧姆接触理论研究. 物理学报, 2018, 67(21): 217301. doi: 10.7498/aps.67.20181479
    [6] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [7] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器. 物理学报, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [8] 楼国锋, 于歆杰, 卢诗华. 引入界面耦合系数的长片型磁电层状复合材料的等效电路模型. 物理学报, 2018, 67(2): 027501. doi: 10.7498/aps.67.20172080
    [9] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [10] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器. 物理学报, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [11] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究. 物理学报, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [12] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [13] 黄乐, 张志勇, 彭练矛. 高性能石墨烯霍尔传感器. 物理学报, 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [14] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [15] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波. 物理学报, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [16] 冯秋燕, 姚佰承, 周金浩, 夏汉定, 范孟秋, 张黎, 吴宇, 饶云江. 基于飞秒激光抽运的石墨烯包裹微光纤波导结构的级联四波混频研究. 物理学报, 2015, 64(18): 184214. doi: 10.7498/aps.64.184214
    [17] 许杰, 周丽, 黄志祥, 吴先良. 含石墨烯临界耦合谐振器的吸收特性研究. 物理学报, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [18] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [19] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO. 物理学报, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [20] 胡辉勇, 张鹤鸣, 吕 懿, 戴显英, 侯 慧, 区健锋, 王 伟, 王喜嫒. SiGe HBT大信号等效电路模型. 物理学报, 2006, 55(1): 403-408. doi: 10.7498/aps.55.403
计量
  • 文章访问数:  7776
  • PDF下载量:  774
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-09
  • 修回日期:  2015-11-13
  • 刊出日期:  2016-03-05

/

返回文章
返回