搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气环境下飞秒激光对铝靶烧蚀过程的研究

康小卫 陈龙 陈洁 盛政明

引用本文:
Citation:

大气环境下飞秒激光对铝靶烧蚀过程的研究

康小卫, 陈龙, 陈洁, 盛政明

Femtosecond laser ablation of an aluminum target in air

Kang Xiao-Wei, Chen Long, Chen Jie, Sheng Zheng-Ming
PDF
导出引用
  • 利用时间分辨的光阴影成像技术研究了在大气环境下飞秒激光烧蚀铝靶的动态过程. 在入射激光能量为4 mJ, 激光光斑超过1 mm时, 激光烧蚀区表面物质以近似平面冲击波形式向外喷射; 在同样激光能量下、激光光斑较小时(约0.6 mm), 激光烧蚀区以近似半球型冲击波形式向外喷射. 当激光能量比较大时(7 mJ), 发现空气的电离对于激光烧蚀靶材有着重要影响. 在光轴附近烧蚀产生的喷射物具有额外的柱状和半圆型的结构, 叠加在平面冲击波结构上.
    The dynamics of laser ablation of solid target with ultrashort intense laser pulses is not only fundamentally interesting, but also relevant to a few important applications such as microfabrication, laser propulsion, laser induced breakdown spectroscopy, etc. By use of time-resolved pump-probe shadowgraphic imaging technology, we study the dynamic process of laser ablation of a planar aluminum target in air. The incident laser pulses are from a Ti: sapphire femtosecond laser amplifier system with a duration of 50 fs, central wavelength of 800 nm, pulse energy varying between 4 mJ and 7 mJ. Time-resolved shadowgraphs of material ejection from the aluminum target are recorded at the time delay up to a few nanoseconds after laser irradiation. By changing the distance between the target and the focal point of the incident laser, we obtain the shadowgraphs of the target ejection under different laser spot sizes. When the laser spot size is relatively large say, over 1 mm, the irradiated target surface is ablated in the form of a planar shock. However, when the laser spot size is relatively small, the ejection appears in the form of a hemispherical blast wave. It is found that the hemispherical blast wave well conforms to the Sedov's blast wave theory. When the laser energy is relatively large, it is found that ionization of air has a great effect on laser ablation. Additional small ejections appear as columnar and hemispherical structures near the laser axis, which are superimposed on the large planar shock. These can be attributed to the following processes. Firstly, as the ionization of air occurs near the laser axis, effective heat transfer from air plasma to the aluminium target leads to enhanced target temperature. This leads to the formation of a columnar structure on a picosecond time scale. Secondly, the columnar ejection and air plasma expansion near the laser axis result in the decrease of air density and pressure, which leads to the formation of the hemispherical structure on a nanosecond time scale.
      通信作者: 盛政明, zmsheng@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11374210)资助的课题.
      Corresponding author: Sheng Zheng-Ming, zmsheng@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374210).
    [1]

    Yuan S, Chin S L, Zeng H P 2015 Chin. Phys. B 24 014208

    [2]

    Wang F, Jiang H B, Gong Q H 2014 Chin. Phys. B 23 014201

    [3]

    Zhang N, Zhu X N, Yang J, Wang X, Wang M 2007 Phys. Rev. Lett. 99 167602

    [4]

    Nakimana A, Tao H Y, Hao Z Q, Sun C K, Gao X, Lin J Q 2013 Chin. Phys. B 22 014209

    [5]

    Du X, He X, Liu Y Q, Wang Y H, Yang Y Q 2012 Chin. Phys. B 21 034210

    [6]

    Guo J H, Ji Y, Hu Y, Ding X Y, Liu X W, Hu H F, Wang X L, Zhai H C 2011 Chin. Phys. B 20 044204

    [7]

    Chichkov B N, Momma C, Nolte S, Alvensleben F V, Tunnermann A 1996 Appl. Phys. A 63 109

    [8]

    Kononenko T V, Konov V I, Garnov S V, Danielius R 1999 Quantum Electron 29 724

    [9]

    Dausinger F, Hugel H, Konov V 2003 Proc. SPIE 5147 106

    [10]

    Bulgakova N M, Zhukov V P, Vorobyev A Y, Guo C L 2008 Appl. Phys. A 92 883

    [11]

    Vorobyev A Y, Guo C L 2006 Opt. Express 14 13113

    [12]

    Wu Z H, Zhang N, Wang M W, Zhu X N 2011 Chin. Opt. Lett. 9 093201

    [13]

    Hu W Q, Yung C Shin, King Galen 2011 Phys. Plasmas 18 093302

    [14]

    Liang W X, Zhu P F, Wang X, Nie S H, Zhang Z C, Cao J M, Sheng Z M, Zhang J 2009 Acta Phys. Sin. 58 5539

    [15]

    Zhu P F, Zhang Z, Chen L, Zheng J, Li R, Wang W, Li J, Wang X, Cao J M, Qian Q, Sheng Z M, Zhang J 2010 Appl. Phys. Lett. 97 211501

    [16]

    Zhu P F, Cao J M, Zhu Y, Geck J, Hidaka Y, Pjerov S, Ritschel T, Berger H, Shen Y, Tobey R, Hill J P, Wang X J 2013 Appl. Phys. Lett. 103 231914

    [17]

    Bulgakova N M, Panchenko A N, Zhukov V P, Kudryashov S I, Pereira A, Marine W, Mocek T, Bulgakov A V 2014 MicromaChinese 5 1344

    [18]

    Guo C, Rodriguez G, Lobad A, Taylor A J 2000 Phys. Rev. Lett. 84 4493

    [19]

    Wu Z H, Zhu X N, Zhang N 2011 J. Appl. Phys. 109 053113

    [20]

    Prce D F, More R M, Walling R S, Guethlein G, Shepherd R L, Stewart R E, White W E 1995 Phys. Rev. Lett. 75 252

    [21]

    Wang X L, Zhang N, Zhao Y B, Li Z L, Di H S, Zhu X N 2008 Acta Phys. Sin. 57 354

    [22]

    Hu H F 2011 Ph. D. Dissertation (Tianjing: Nankai University)

  • [1]

    Yuan S, Chin S L, Zeng H P 2015 Chin. Phys. B 24 014208

    [2]

    Wang F, Jiang H B, Gong Q H 2014 Chin. Phys. B 23 014201

    [3]

    Zhang N, Zhu X N, Yang J, Wang X, Wang M 2007 Phys. Rev. Lett. 99 167602

    [4]

    Nakimana A, Tao H Y, Hao Z Q, Sun C K, Gao X, Lin J Q 2013 Chin. Phys. B 22 014209

    [5]

    Du X, He X, Liu Y Q, Wang Y H, Yang Y Q 2012 Chin. Phys. B 21 034210

    [6]

    Guo J H, Ji Y, Hu Y, Ding X Y, Liu X W, Hu H F, Wang X L, Zhai H C 2011 Chin. Phys. B 20 044204

    [7]

    Chichkov B N, Momma C, Nolte S, Alvensleben F V, Tunnermann A 1996 Appl. Phys. A 63 109

    [8]

    Kononenko T V, Konov V I, Garnov S V, Danielius R 1999 Quantum Electron 29 724

    [9]

    Dausinger F, Hugel H, Konov V 2003 Proc. SPIE 5147 106

    [10]

    Bulgakova N M, Zhukov V P, Vorobyev A Y, Guo C L 2008 Appl. Phys. A 92 883

    [11]

    Vorobyev A Y, Guo C L 2006 Opt. Express 14 13113

    [12]

    Wu Z H, Zhang N, Wang M W, Zhu X N 2011 Chin. Opt. Lett. 9 093201

    [13]

    Hu W Q, Yung C Shin, King Galen 2011 Phys. Plasmas 18 093302

    [14]

    Liang W X, Zhu P F, Wang X, Nie S H, Zhang Z C, Cao J M, Sheng Z M, Zhang J 2009 Acta Phys. Sin. 58 5539

    [15]

    Zhu P F, Zhang Z, Chen L, Zheng J, Li R, Wang W, Li J, Wang X, Cao J M, Qian Q, Sheng Z M, Zhang J 2010 Appl. Phys. Lett. 97 211501

    [16]

    Zhu P F, Cao J M, Zhu Y, Geck J, Hidaka Y, Pjerov S, Ritschel T, Berger H, Shen Y, Tobey R, Hill J P, Wang X J 2013 Appl. Phys. Lett. 103 231914

    [17]

    Bulgakova N M, Panchenko A N, Zhukov V P, Kudryashov S I, Pereira A, Marine W, Mocek T, Bulgakov A V 2014 MicromaChinese 5 1344

    [18]

    Guo C, Rodriguez G, Lobad A, Taylor A J 2000 Phys. Rev. Lett. 84 4493

    [19]

    Wu Z H, Zhu X N, Zhang N 2011 J. Appl. Phys. 109 053113

    [20]

    Prce D F, More R M, Walling R S, Guethlein G, Shepherd R L, Stewart R E, White W E 1995 Phys. Rev. Lett. 75 252

    [21]

    Wang X L, Zhang N, Zhao Y B, Li Z L, Di H S, Zhu X N 2008 Acta Phys. Sin. 57 354

    [22]

    Hu H F 2011 Ph. D. Dissertation (Tianjing: Nankai University)

  • [1] 张子发, 袁翔, 鹿颖申, 何丹敏, 严全河, 曹浩宇, 洪峰, 蒋最敏, 徐闰, 马忠权, 宋宏伟, 徐飞. 动态热风辅助再结晶策略改善CsPbI2Br钙钛矿在大气环境下的结晶及其光电性能. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240153
    [2] 陆云杰, 陶弢, 赵斌, 郑坚. 激光烧蚀固体碳氢材料的离子组分分离研究. 物理学报, 2023, 72(7): 075201. doi: 10.7498/aps.72.20230013
    [3] 周毛吉, 李亚举, 钱东斌, 叶晓燕, 林平, 马新文. 粒径对激光驱动颗粒溅射动力学特征的影响. 物理学报, 2022, 71(14): 145203. doi: 10.7498/aps.71.20220243
    [4] 叶浩, 黄印博, 王琛, 刘国荣, 卢兴吉, 曹振松, 黄尧, 齐刚, 梅海平. 激光烧蚀-吸收光谱测量铀同位素比实验研究. 物理学报, 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
    [5] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔. 氧化锌纳米棒形貌控制及其在钙钛矿太阳能电池中作为电子传输层的应用. 物理学报, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [6] 白清顺, 张凯, 沈荣琦, 张飞虎, 苗心向, 袁晓东. 单晶铁金属表面污染物的激光烧蚀机理. 物理学报, 2018, 67(23): 234401. doi: 10.7498/aps.67.20180999
    [7] 罗乐乐, 窦志国, 叶继飞. 掺杂红外染料聚叠氮缩水甘油醚工质激光烧蚀推进性能优化探索. 物理学报, 2018, 67(18): 187901. doi: 10.7498/aps.67.20180479
    [8] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用. 物理学报, 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [9] 段兴跃, 李小康, 程谋森, 李干. 激光烧蚀掺杂金属聚合物羽流屏蔽特性数值研究. 物理学报, 2016, 65(19): 197901. doi: 10.7498/aps.65.197901
    [10] 史久林, 郭鹏峰, 黄育, 钱佳成, 王泓鹏, 刘娟, 何兴道. 温度、湿度及压强对激光在水中衰减特性的影响. 物理学报, 2015, 64(2): 024215. doi: 10.7498/aps.64.024215
    [11] 李干, 程谋森, 李小康. 激光烧蚀聚甲醛的热-化学耦合模型及其验证. 物理学报, 2014, 63(10): 107901. doi: 10.7498/aps.63.107901
    [12] 刘慎业, 黄翼翔, 胡昕, 张继彦, 杨国洪, 李军, 易荣清, 杜华冰, 丁永坤. 高强度二倍频激光辐照银薄膜靶的烧蚀和X光辐射实验研究. 物理学报, 2013, 62(3): 035202. doi: 10.7498/aps.62.035202
    [13] 常浩, 金星, 陈朝阳. 纳秒激光烧蚀冲量耦合数值模拟. 物理学报, 2013, 62(19): 195203. doi: 10.7498/aps.62.195203
    [14] 包凌东, 韩敬华, 段涛, 孙年春, 高翔, 冯国英, 杨李茗, 牛瑞华, 刘全喜. 纳秒紫外重复脉冲激光烧蚀单晶硅的热力学过程研究. 物理学报, 2012, 61(19): 197901. doi: 10.7498/aps.61.197901
    [15] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究. 物理学报, 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [16] 黄庆举. 激光烧蚀金属Al诱导发光的动力学研究. 物理学报, 2008, 57(4): 2314-2319. doi: 10.7498/aps.57.2314
    [17] 郑新亮, 李广山, 钟寿仙, 田进寿, 李振红, 任兆玉. 激光烧蚀对碳纳米管薄膜场发射性能的影响. 物理学报, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [18] 张 翼, 郑志远, 李玉同, 刘 峰, 李汉明, 鲁 欣, 张 杰. 两个冲击波相互碰撞的演化过程. 物理学报, 2007, 56(10): 5931-5936. doi: 10.7498/aps.56.5931
    [19] 成金秀, 郑志坚, 陈红素, 缪文勇, 陈 波, 王耀梅, 胡 昕. 1.06μm 激光直接驱动烧蚀靶内爆压缩特性. 物理学报, 2004, 53(10): 3419-3423. doi: 10.7498/aps.53.3419
    [20] 张树东, 李海洋. 激光烧蚀Al热原子与CF4反应中C2的形成及其发光光谱研究. 物理学报, 2003, 52(5): 1297-1301. doi: 10.7498/aps.52.1297
计量
  • 文章访问数:  5610
  • PDF下载量:  336
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-14
  • 修回日期:  2015-12-20
  • 刊出日期:  2016-03-05

/

返回文章
返回