搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于取样光纤布拉格光栅的全光纤拉曼测温分光系统设计及优化

巩鑫 华灯鑫 李仕春 王骏 石晓菁

引用本文:
Citation:

基于取样光纤布拉格光栅的全光纤拉曼测温分光系统设计及优化

巩鑫, 华灯鑫, 李仕春, 王骏, 石晓菁

Design and optimization of all-fiber rotational Raman spectroscope for temperature measurement based on sampled fiber Bragg grating

Gong Xin, Hua Deng-Xin, Li Shi-Chun, Wang Jun, Shi Xiao-Jing
PDF
导出引用
  • 为实现大气温度全天时和高精度主动遥感探测, 转动拉曼测温激光雷达的分光系统需要滤除强烈的背景光噪声, 以及对Mie-Rayleigh散射提供70 dB以上的带外抑制率. 本文提出了以可见光波段取样光纤布拉格光栅为核心的多级级联的特征光谱提取光路, 构建高抑制率的全光纤拉曼测温分光系统, 以实现大气温度的全天时和高精度探测. 根据分光系统光路的传输特性, 采用传输矩阵模型, 优化设计了影响取样光纤布拉格光栅带外抑制率的主要因素(折射率调制深度、栅区总长度、取样周期和占空比), 得到了优化的光谱分光系统参数. 利用该分光系统可实现太阳背景光强度和Mie-Rayleigh散射信号强度分别比转动拉曼散射信号强度弱40 dB和50 dB, 信噪比高于100时, 白天探测高度可达1.6 km. 该全光纤分光系统具有小型化、抗干扰和稳定性高的优点, 可为陆基及星载拉曼测温激光雷达提供一种全新的解决方案.
    Atmospheric temperature is a key parameter to characterize the state of the atmosphere. Owing to the independence of the aerosol effect for profiling the temperture, the pure rotational Raman lidar has become one of valid tools. To achieve all-time and high-precision active remote sensing, strong background noise needs to be filtered out, and the inhibition rate outside the band of more than 70 dB is needed for Mie-Rayleigh scattering in a rotational Raman temperature measurement lidar. In this paper, a multiple cascaded light path based on sampled fiber Bragg grating (SFBG) and fiber Bragg grating (FBG) in visible spectrum is presented to obtain characteristic spectrum. All-fiber spectroscopic system with high inhibition rate for Raman thermometry is set up based on the above light path. The core device consists of single mode fibers (460-HP) to ensure the compatibility with optical fiber. The main factors affecting the inhibition rate outside the band of sampled fiber Bragg grating, including refractive index modulation depth, total length of grating, sampling period and duty, are optimally designed by using mode coupling theory and tranmission matrix model. Then the optimized parameters of spectroscope are obtained. The results show that the inhibition rate outside the band is proportional to the refractive index modulation depth and duty, when the total length of grating is a constant. However, a larger sidelobe jamming will be caused by overlarge refractive index modulation depth. The less amount and widened full width half maximun of reflectivity peak appear following overlarge duty. In the Raman spectroscopic system of this paper, the inhibition rates outside the bands of SFBG and FBG are 30 dB and 20 dB, respectively. The inhibition rate of more than 70 dB is realized for Mie-Rayleigh scattering, after passing through two FBGs and one SFBG. The simulated optimum parameters of SFBGs are the effective index of the guide mode of 1.465, the saturation index variation of 0.00005, the SFBG length of 20 mm, the sampled period of 0.4 mm, and the Bragg wavelengths of 528.51 nm and 530.76 nm. By using the American standard model and atmospheric scattering signal model, the all-time signal-to-noise ratio (SNR) and inhibition rate of Mie-Rayleigh scattering and solar background light are simulated and analyzed. The results show that the intensities of solar background light and Mie-Rayleigh scattering signal are weaker than Raman scattering signals at 40 dB and 50 dB, respectively. The detection height in daytime and night can reach up to 1.6 km and 2.6 km under the condition of SNR of more than 100, respectively. Owing to these advantages such as miniaturization, anti-interference and high stability, this spectroscope provides a viable solution for filter systems of ground-based and spaceborne lidars.
      通信作者: 华灯鑫, dengxinhua@xaut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61275185, 61308106)、陕西省自然科学基金(批准号: 2013JM5001)和陕西省教育厅科学研究计划专项(批准号: 15JK1529)资助的课题.
      Corresponding author: Hua Deng-Xin, dengxinhua@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275185, 61308106), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM5001), and the Scientific Research Plan Projects of Shaanxi Education Department, China (Grant No. 15JK1529).
    [1]

    Girolamo P D, Behrendt A, Wulfmeyer V 2006 Appl. Opt. 45 2474

    [2]

    Liu Y, Wang L S, Tao P L, Feng S C, Yin G L, Ren W H, Tan Z W, Jian S S 2011 Acta Phys. Sin. 60 024207 (in Chinese) [刘艳, 汪磊石, 陶沛琳, 冯素春, 尹国路, 任文华, 谭中伟, 简水生 2011 物理学报 60 024207]

    [3]

    Tang B H, Wang N, Qian Y G 2012 Geosciences and Remote Sensing Symposium Munich, Germany, July 22-27, 2012 pp2482-2485

    [4]

    Li S C, Hua D X, Wang L, Song Y H 2013 Optik 124 1450

    [5]

    Cooney J 1972 J. Appl. Meteorol. 11 108

    [6]

    Li Y J, Song S L, Li F Q, Cheng X W, Chen Z W, Liu L M, Yang Y, Gong S S 2015 Chinese J. Geophys. 58 2294 (in Chinese) [李亚娟, 宋沙磊, 李发泉, 程学武, 陈振威, 刘林美, 杨勇, 龚顺生 2015 地球物理学报 58 2294]

    [7]

    Zhang Y C, Chen W, Sun S L, Meng Z 2015 Chin. Phys. B 24 094209

    [8]

    Wang Y F, Gao F, Zhu C X, He T Y, Hua D X 2015 Acta Opt. Sin. 35 03280004 (in Chinese) [王玉峰, 高飞, 朱承炫, 何廷尧, 华灯鑫 2015 光学学报 35 03280004]

    [9]

    Andreas B, Takuji N, Michitaka O, Rudolf B, Toshitaka T 2002 Appl. Opt. 36 7657

    [10]

    Wang H W, Hua D X, Wang Y F, Gao P, Zhao H 2013 Acta Phys. Sin. 62 120701 (in Chinese) [王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎 2013 物理学报 62 120701]

    [11]

    Borovoi A, Konoshonkin A, Kustova N, Okamoto H 2012 Opt. Express 20 28222

    [12]

    Ren X Y, Tian Z S, Sun L J, Fu S Y 2014 Acta Phys. Sin. 63 164209 (in Chinese) [任秀云, 田兆硕, 孙兰君, 付石友 2014 物理学报 63 164209]

    [13]

    Wang X, Huang J P, Zhang R D, Chen B, Bi J R 2010 J. Geophys. Res. 115 1

    [14]

    Ma C J, Ren L Y, Qu E S 2012 Opt. Commun. 285 4949

    [15]

    Mi Q S, Zhu H N, Gao X R, Li J L 2015 Optik 126 432

    [16]

    Chen S, Qiu Z, Zhang Y, Chen H, Wang Y 2011 J. Quant. Spectrosc. Radiat. 112 304

    [17]

    Mihailov S J 2012 Sensors-Basel 12 1898

    [18]

    Jia B H, Sheng Q Q, Feng D Q, Dong X Y 2003 Chin. J. Lasers 20 247 (in Chinese) [贾宝华, 盛秋琴, 冯丹琴, 董孝义 2003 中国激光 20 247]

    [19]

    Zhang Z J, Wang C M 2007 Laser Infrared 37 552 (in Chinese) [张自嘉, 王昌明 2007 激光与红外 37 552]

    [20]

    Zhu H N, Luo B, Pan W 2012 J. Opt. Soc. Am. B 29 1497

    [21]

    Wu H, Yan H, Li X 2010 Optik 121 1789

    [22]

    Wen K, Yan L, Pan W 2011 Optik 122 2249

    [23]

    Dukhyeon K, Hyungki C 2005 Opt. Lett. 30 1728

    [24]

    Behrendt A, Reichardt J 2000 Appl. Opt. 39 1372

    [25]

    Li S C, Hua D X, Hu L L, Yan Q, Tian X Y 2014 Spectrosc. Lett. 47 244

    [26]

    Li S C, Hua D X, Wang Y F, Gao F, Yan Q, Shi X J 2015 J. Quant. Spectrosc. Radiat. 153 113

    [27]

    Mao J D, Hua D X, Hu L L, Wang Y F, Wang L 2010 Acta Opt. Sin. 30 7 (in Chinese) [毛建东, 华灯鑫, 胡辽林, 王玉峰, 汪丽 2010 光学学报 30 7]

  • [1]

    Girolamo P D, Behrendt A, Wulfmeyer V 2006 Appl. Opt. 45 2474

    [2]

    Liu Y, Wang L S, Tao P L, Feng S C, Yin G L, Ren W H, Tan Z W, Jian S S 2011 Acta Phys. Sin. 60 024207 (in Chinese) [刘艳, 汪磊石, 陶沛琳, 冯素春, 尹国路, 任文华, 谭中伟, 简水生 2011 物理学报 60 024207]

    [3]

    Tang B H, Wang N, Qian Y G 2012 Geosciences and Remote Sensing Symposium Munich, Germany, July 22-27, 2012 pp2482-2485

    [4]

    Li S C, Hua D X, Wang L, Song Y H 2013 Optik 124 1450

    [5]

    Cooney J 1972 J. Appl. Meteorol. 11 108

    [6]

    Li Y J, Song S L, Li F Q, Cheng X W, Chen Z W, Liu L M, Yang Y, Gong S S 2015 Chinese J. Geophys. 58 2294 (in Chinese) [李亚娟, 宋沙磊, 李发泉, 程学武, 陈振威, 刘林美, 杨勇, 龚顺生 2015 地球物理学报 58 2294]

    [7]

    Zhang Y C, Chen W, Sun S L, Meng Z 2015 Chin. Phys. B 24 094209

    [8]

    Wang Y F, Gao F, Zhu C X, He T Y, Hua D X 2015 Acta Opt. Sin. 35 03280004 (in Chinese) [王玉峰, 高飞, 朱承炫, 何廷尧, 华灯鑫 2015 光学学报 35 03280004]

    [9]

    Andreas B, Takuji N, Michitaka O, Rudolf B, Toshitaka T 2002 Appl. Opt. 36 7657

    [10]

    Wang H W, Hua D X, Wang Y F, Gao P, Zhao H 2013 Acta Phys. Sin. 62 120701 (in Chinese) [王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎 2013 物理学报 62 120701]

    [11]

    Borovoi A, Konoshonkin A, Kustova N, Okamoto H 2012 Opt. Express 20 28222

    [12]

    Ren X Y, Tian Z S, Sun L J, Fu S Y 2014 Acta Phys. Sin. 63 164209 (in Chinese) [任秀云, 田兆硕, 孙兰君, 付石友 2014 物理学报 63 164209]

    [13]

    Wang X, Huang J P, Zhang R D, Chen B, Bi J R 2010 J. Geophys. Res. 115 1

    [14]

    Ma C J, Ren L Y, Qu E S 2012 Opt. Commun. 285 4949

    [15]

    Mi Q S, Zhu H N, Gao X R, Li J L 2015 Optik 126 432

    [16]

    Chen S, Qiu Z, Zhang Y, Chen H, Wang Y 2011 J. Quant. Spectrosc. Radiat. 112 304

    [17]

    Mihailov S J 2012 Sensors-Basel 12 1898

    [18]

    Jia B H, Sheng Q Q, Feng D Q, Dong X Y 2003 Chin. J. Lasers 20 247 (in Chinese) [贾宝华, 盛秋琴, 冯丹琴, 董孝义 2003 中国激光 20 247]

    [19]

    Zhang Z J, Wang C M 2007 Laser Infrared 37 552 (in Chinese) [张自嘉, 王昌明 2007 激光与红外 37 552]

    [20]

    Zhu H N, Luo B, Pan W 2012 J. Opt. Soc. Am. B 29 1497

    [21]

    Wu H, Yan H, Li X 2010 Optik 121 1789

    [22]

    Wen K, Yan L, Pan W 2011 Optik 122 2249

    [23]

    Dukhyeon K, Hyungki C 2005 Opt. Lett. 30 1728

    [24]

    Behrendt A, Reichardt J 2000 Appl. Opt. 39 1372

    [25]

    Li S C, Hua D X, Hu L L, Yan Q, Tian X Y 2014 Spectrosc. Lett. 47 244

    [26]

    Li S C, Hua D X, Wang Y F, Gao F, Yan Q, Shi X J 2015 J. Quant. Spectrosc. Radiat. 153 113

    [27]

    Mao J D, Hua D X, Hu L L, Wang Y F, Wang L 2010 Acta Opt. Sin. 30 7 (in Chinese) [毛建东, 华灯鑫, 胡辽林, 王玉峰, 汪丽 2010 光学学报 30 7]

  • [1] 李建宇, 董忠级, 张吉宏, 史雯慧, 郑加金, 韦玮. 具有温度自补偿的保偏光纤布拉格光栅多参量传感器的设计与制备. 物理学报, 2023, 72(14): 144206. doi: 10.7498/aps.72.20230478
    [2] 孙苗, 杨爽, 汤玉泉, 赵晓虎, 张志荣, 庄飞宇. 基于拉曼散射光动态校准的分布式光纤温度传感系统. 物理学报, 2022, 71(20): 200701. doi: 10.7498/aps.71.20220611
    [3] 王浩, 曹珊珊, 苏俊豪, 徐海涛, 王震, 郑加金, 韦玮. 基于双包层光纤布拉格光栅传感器的锂电池组温度场监控. 物理学报, 2022, 71(10): 104207. doi: 10.7498/aps.71.20212302
    [4] 李启蒙, 李仕春, 秦宇丽, 胡向龙, 赵静, 宋跃辉, 华灯鑫. 绝对测温转动拉曼激光雷达分光系统设计 及性能. 物理学报, 2018, 67(1): 014207. doi: 10.7498/aps.67.20171834
    [5] 王玉峰, 张晶, 汤柳, 王晴, 高天乐, 宋跃辉, 狄慧鸽, 李博, 华灯鑫. 基于拉曼激光雷达的大气三相态水同步精细探测分光系统的设计与仿真分析. 物理学报, 2018, 67(22): 224205. doi: 10.7498/aps.67.20180644
    [6] 周泰斗, 梁小宝, 李超, 黄志华, 封建胜, 赵磊, 王建军, 景峰. 基于透射型体布拉格光栅的两通道2.5 kW光谱组束输出. 物理学报, 2017, 66(8): 084204. doi: 10.7498/aps.66.084204
    [7] 起俊丰, 钟祝强, 王广娜, 夏光琼, 吴正茂. 高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性. 物理学报, 2017, 66(24): 244207. doi: 10.7498/aps.66.244207
    [8] 王骏, 崔萌, 陆红, 汪丽, 闫庆, 刘晶晶, 华灯鑫. 基于固体腔扫描法布里-珀罗干涉仪的大气温度绝对探测方法研究. 物理学报, 2017, 66(8): 089202. doi: 10.7498/aps.66.089202
    [9] 李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫. 绝对探测大气温度的纯转动拉曼激光雷达系统. 物理学报, 2016, 65(14): 143301. doi: 10.7498/aps.65.143301
    [10] 青海银, 张援农, 周晨, 赵正予, 陈罡. 基于MST雷达垂直风速的大气温度剖面反演. 物理学报, 2014, 63(9): 094301. doi: 10.7498/aps.63.094301
    [11] 王红伟, 华灯鑫, 王玉峰, 高朋, 赵虎. 水汽探测拉曼激光雷达的新型光谱分光系统设计与分析. 物理学报, 2013, 62(12): 120701. doi: 10.7498/aps.62.120701
    [12] 许将明, 冷进勇, 韩凯, 周朴, 侯静. 单频光纤拉曼放大器的实验研究. 物理学报, 2012, 61(7): 074204. doi: 10.7498/aps.61.074204
    [13] 马晶, 车驰, 于思源, 谭丽英, 周彦平, 王健. 光纤布拉格光栅辐射损伤及其对光谱特性的影响. 物理学报, 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [14] 饶云江, 李立, 贾新鸿, 冉曾令, 张田虎. 基于拉曼组合放大的长距离光纤传输系统. 物理学报, 2010, 59(7): 4682-4686. doi: 10.7498/aps.59.4682
    [15] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性. 物理学报, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [16] 王卫宁. 苏氨酸的太赫兹及拉曼光谱研究. 物理学报, 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
    [17] 王敏, 胡顺星, 方欣, 汪少林, 曹开法, 赵培涛, 范广强, 王英俭. 激光雷达精确修正对流层目标定位误差. 物理学报, 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [18] 汪少林, 苏 嘉, 赵培涛, 曹开法, 胡顺星, 魏合理, 谭 锟, 胡欢陵. 基于三级Fabry-Perot标准具的纯转动拉曼测温激光雷达. 物理学报, 2008, 57(6): 3941-3947. doi: 10.7498/aps.57.3941
    [19] 徐存英, 张鹏翔, 严 磊. 表面修饰的钛酸钡的拉曼光谱. 物理学报, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [20] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度. 物理学报, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
计量
  • 文章访问数:  5085
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-16
  • 修回日期:  2016-01-20
  • 刊出日期:  2016-04-05

/

返回文章
返回