搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔融织构YBa2Cu3O7-晶体中磁通涡旋锁定转变反常行为研究

吴董杰 徐克西 唐天威

引用本文:
Citation:

熔融织构YBa2Cu3O7-晶体中磁通涡旋锁定转变反常行为研究

吴董杰, 徐克西, 唐天威

Abnormal behaviors in lock-in transition of the vortices in melt textured growth of YBa2Cu3O7- crystals

Wu Dong-Jie, Xu Ke-Xi, Tang Tian-Wei
PDF
导出引用
  • 通过改变磁场与c轴方向夹角测量了熔融织构YBa2Cu3O7- (YBCO)晶体的磁力矩信号响应, 观察到了磁通涡旋系统的锁定(lock-in)转变行为以及锁定转变角正比于外磁场强度的反常现象. 基于Ginzburg-Landau理论和磁通涡旋线Kink结构模型, 对上述锁定转变反常现象进行了分析讨论, 提出了熔融织构YBCO晶体中存在平行于a-b面的延展性关联缺陷结构假设, 导出了锁定转变临界角与温度和磁场之间的关系, 理论分析模型结果与实验测量结果基本符合.
    The magnetization behavior of the layered anisotropic high-Tc superconductor in the mixed state Hc1 H Hc2 has a feature that when the angle between the applied magnetic field H and the CuO plane (a-b plane) is less than a critical value ( L), the vortex lattice is converted from three-dimensional structure into two-dimensional structure, forming a phenomenon so called the lock-in transition, where the flux lines are completely parallel to the a-b plane, and the vertical component of the magnetic induction B丄 (perpendicular to the a-b plane) is consequently zero. So far, there have still existed the differences in the physical explanation of the lock-in phenomenon. For the lock-in phenomenon occurring in the region between the CuO planes, it can be considered to be caused by the transverse Meissner effect. However, for the one occurring in other extended correlated defect areas, such as twin boundaries in YBa2Cu3O7- (YBCO) crystal, this phenomenon is believed to be the results of the energy linearization of the vortices trapped in the defect channels. Many theoretical and experimental studies have revealed the existence of the lock-in behaviors related to the microstructure properties of the superconductor crystals. Therefore, the research of the lock-in transition behavior will be helpful to understand the intrinsic pinning properties of the layered anisotropic superconductors, and the phase transition process in the vortex system. In this paper, we systematically measure the magnetic torque signal in melt texture growth YBCO (MTG-YBCO) bulk and observe an abnormal lock-in transition behavior in the vortex system. The critical angle of the lock-in transition is found to be directly proportional to the strength of the magnetic field, which is contrary to the observations in the common cases. According to the framework of the Ginzburg-Landau theory and the kink structure model of the vortex line, we discuss the abnormal phenomenon, and propose that there is a type of extend-correlated defect structure, which is parallel to the a-b plane, in the MTG-YBCO crystal. The relationship between the critical angle of the lock-in transition to the temperature and the magnetic field is established theoretically, and the theoretical results coincide well with the torque measurements.
      通信作者: 徐克西, kxxu@staff.shu.edu.cn
    • 基金项目: 上海市高温超导重点实验室开放课题基金(批准号: 14DZ2260700)资助的课题.
      Corresponding author: Xu Ke-Xi, kxxu@staff.shu.edu.cn
    • Funds: Project Supported by the Opening Project of Shanghai Key Laboratory of High Temperature Superconductors, China (Grant No. 14DZ2260700).
    [1]

    Tinkham M 1996 Introduction to Superconductivity (New York: Dover Publication, Inc) pp314-383

    [2]

    Blatter G 1994 Rev. Mod. Phys. 66 1285

    [3]

    Farrell D E, Rice J P, Ginsberg D M, Liu J Z 1990 Phys. Rev. Lett. 64 1573

    [4]

    Feinberg D, Villard C 1990 Phys. Rev. Lett. 65 919

    [5]

    Kwok W K, Welp U, Vinokur V M, Fleshler S, Downey J, Crabtree G W 1991 Phys. Rev. Lett. 67 390

    [6]

    Bulaevskii L N 1991 Phys. Rev. B 44 910

    [7]

    Sonin E B 1993 Phys. Rev. B 48 10487

    [8]

    Zhukov A A, Perkins G K, Thomas J V, Caplin A D, Kupfer H, Wolf T 1997 Phys. Rev. B 56 3481

    [9]

    Kogan V G 1988 Phys. Rev. B 38 7049

    [10]

    Vulcanescu V, Collin G, Kojima H, Tanaka I, Fruchter L 1994 Phys. Rev. B 50 4139

    [11]

    Zech D, Rossel C, Lense L, Keller H, Lee S L, Karpinski J 1996 Phys. Rev. B 54 12535

    [12]

    Kohout S, Schneider T, Roos J, Keller H, Sasagawa T, Takagi H 2007 Phys. Rev. B 76 064513

    [13]

    Bosma S, Weyeneth S, Puzniak R, Erb A, Keller H 2012 Phys. Rev. B 86 174502

    [14]

    Babu N H, Jackson K P, Dennis A R, Shi Y H, Mancini C, Durrell J H, Cardwell D A 2012 Supercond. Sci. Technol 25 075012

    [15]

    Tang T W, Wu D J, Wu X D, Xu K X 2015 Physica C 519 159

    [16]

    Murakami M 1992 Melt Processed High-Temperature Superconductors (Singapore: World Scientific) pp101-105

    [17]

    Silhanek A, Civale L, Candia S, Nieva G 1999 Phys. Rev. B 59 13620

    [18]

    Avila M A, Civale L, Silhanek V, Ribeiro R A, Lima O F, Lanza H 2001 Phys. Rev. B 64 144502

    [19]

    Kortyka A, Puzniak R, Wisniewski A, Zehetmayer M, Weber H W, Cai Y Q, Yao X 2010 Supercond. Sci. Technol. 23 065001

    [20]

    Kortyka A, Puzniak R, Wisniewski A, Zehetmayer M, Weber H W, Tang C Y, Yao X, Conder K 2010 Phys. Rev. B 82 054510

    [21]

    de Gennes P G 1966 Superconductivity of Metals and Alloys (New York: Benjamin W A) p227

    [22]

    Blatter G, Feigel'man M V, Geshkenbein V B, Larkin A I, Vinokur V M 1994 Rev. Mod. Phys. 66 1125

  • [1]

    Tinkham M 1996 Introduction to Superconductivity (New York: Dover Publication, Inc) pp314-383

    [2]

    Blatter G 1994 Rev. Mod. Phys. 66 1285

    [3]

    Farrell D E, Rice J P, Ginsberg D M, Liu J Z 1990 Phys. Rev. Lett. 64 1573

    [4]

    Feinberg D, Villard C 1990 Phys. Rev. Lett. 65 919

    [5]

    Kwok W K, Welp U, Vinokur V M, Fleshler S, Downey J, Crabtree G W 1991 Phys. Rev. Lett. 67 390

    [6]

    Bulaevskii L N 1991 Phys. Rev. B 44 910

    [7]

    Sonin E B 1993 Phys. Rev. B 48 10487

    [8]

    Zhukov A A, Perkins G K, Thomas J V, Caplin A D, Kupfer H, Wolf T 1997 Phys. Rev. B 56 3481

    [9]

    Kogan V G 1988 Phys. Rev. B 38 7049

    [10]

    Vulcanescu V, Collin G, Kojima H, Tanaka I, Fruchter L 1994 Phys. Rev. B 50 4139

    [11]

    Zech D, Rossel C, Lense L, Keller H, Lee S L, Karpinski J 1996 Phys. Rev. B 54 12535

    [12]

    Kohout S, Schneider T, Roos J, Keller H, Sasagawa T, Takagi H 2007 Phys. Rev. B 76 064513

    [13]

    Bosma S, Weyeneth S, Puzniak R, Erb A, Keller H 2012 Phys. Rev. B 86 174502

    [14]

    Babu N H, Jackson K P, Dennis A R, Shi Y H, Mancini C, Durrell J H, Cardwell D A 2012 Supercond. Sci. Technol 25 075012

    [15]

    Tang T W, Wu D J, Wu X D, Xu K X 2015 Physica C 519 159

    [16]

    Murakami M 1992 Melt Processed High-Temperature Superconductors (Singapore: World Scientific) pp101-105

    [17]

    Silhanek A, Civale L, Candia S, Nieva G 1999 Phys. Rev. B 59 13620

    [18]

    Avila M A, Civale L, Silhanek V, Ribeiro R A, Lima O F, Lanza H 2001 Phys. Rev. B 64 144502

    [19]

    Kortyka A, Puzniak R, Wisniewski A, Zehetmayer M, Weber H W, Cai Y Q, Yao X 2010 Supercond. Sci. Technol. 23 065001

    [20]

    Kortyka A, Puzniak R, Wisniewski A, Zehetmayer M, Weber H W, Tang C Y, Yao X, Conder K 2010 Phys. Rev. B 82 054510

    [21]

    de Gennes P G 1966 Superconductivity of Metals and Alloys (New York: Benjamin W A) p227

    [22]

    Blatter G, Feigel'man M V, Geshkenbein V B, Larkin A I, Vinokur V M 1994 Rev. Mod. Phys. 66 1125

  • [1] 易栖如, 熊沛雨, 王焕华, 李港, 王云开, 董恩阳, 陈雨, 沈治邦, 吴云, 袁洁, 金魁, 高琛. YBa2Cu3O7–δ薄膜微结构的同步辐射三维倒空间扫描研究. 物理学报, 2023, 72(4): 046101. doi: 10.7498/aps.72.20221776
    [2] 陈昌兆, 蔡传兵, 刘志勇, 应利良, 高 波, 刘金磊, 鲁玉明. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究. 物理学报, 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
    [3] 陈镇平, 薛运才, 苏玉玲, 宫世成, 张金仓. Gd替代YBa2Cu3O7-δ超导体的相结构与局域电子结构的研究. 物理学报, 2005, 54(11): 5382-5388. doi: 10.7498/aps.54.5382
    [4] 张波, 田明亮, 张裕恒. 2H-Nb0.9Ta0.1Se2中磁通涡旋输运的标度行为. 物理学报, 2001, 50(11): 2221-2225. doi: 10.7498/aps.50.2221
    [5] 王峰, 孙国庆, 孔祥木, 单磊, 金新, 张宏. YBa2Cu3O7-δ熔融织构样品的磁响应研究. 物理学报, 2001, 50(8): 1590-1595. doi: 10.7498/aps.50.1590
    [6] 刘峰, 黄钧伟, 刘伟, 肖玲, 任洪涛, 焦玉磊, 郑明辉, 阎守胜. 弱场下熔融织构YBa2Cu3O7-δ样品局域磁通蠕动的实验研究. 物理学报, 2001, 50(10): 2001-2007. doi: 10.7498/aps.50.2001
    [7] 王智河, 曹效文, 方 军, 陈治友, 李可斌. YBa2Cu3O7-δ外延薄膜的不可逆线与磁通玻璃线. 物理学报, 1999, 48(1): 154-162. doi: 10.7498/aps.48.154
    [8] 徐克西, 周世平, 鲍家善. YBa2Cu3O7-δ外延膜中的非线性光响应. 物理学报, 1998, 47(2): 307-315. doi: 10.7498/aps.47.307
    [9] 王智河, 曹效文, 陈敬林, 李可斌. YBa2Cu3O7-δ外延薄膜的有效钉扎势. 物理学报, 1998, 47(10): 1720-1726. doi: 10.7498/aps.47.1720
    [10] 蔡盟, 方明虎, 张宣嘉, 焦正宽, 张其瑞, 容锡燊, 赵柏儒. Y0.9Eu0.1Ba2Cu3O7-δ中的磁通蠕动研究. 物理学报, 1994, 43(9): 1517-1522. doi: 10.7498/aps.43.1517
    [11] 张贻瞳, 金新, 张长贵, 金继荣, 姚希贤, 吉争鸣, 孙志坚, 杨森祖. YBa2Cu3O7-δ薄膜热激发磁通蠕动研究. 物理学报, 1993, 42(7): 1174-1178. doi: 10.7498/aps.42.1174
    [12] 谢晓明, 陈廷国. YBa2Cu3O7-δ中正交-四方相变的级次. 物理学报, 1992, 41(11): 1830-1836. doi: 10.7498/aps.41.1830
    [13] 金新, 张贻瞳, 陆瑞熙, 姚希贤, 刘奉生, 牟慧麟, 吴晓祖, 周廉. Yba2Cu3O7-δ不可逆线与钉扎势的关联. 物理学报, 1992, 41(1): 123-127. doi: 10.7498/aps.41.123
    [14] 范宏昌, 金新, 鹿牧, 张贻瞳, 徐小农, 姚希贤. 熔融织构YBa2Cu3O7-y各向异性临界电流密度的磁测量. 物理学报, 1992, 41(2): 317-322. doi: 10.7498/aps.41.317
    [15] 林明喜, 陈冠冕, 阿莎, 徐孝贞. YBa2Cu3-xFexOy的离子配位与结构转变. 物理学报, 1992, 41(1): 128-135. doi: 10.7498/aps.41.128
    [16] 杨永宏, 邢定钰, 龚昌德. YBa2Cu3O7-x的金属-绝缘体转变. 物理学报, 1992, 41(1): 136-143. doi: 10.7498/aps.41.136
    [17] 王承章, 王怀玉, 章立源. Zn局域替代YBa2Cu3O7中的Cu引起的电子结构变化. 物理学报, 1991, 40(11): 1862-1868. doi: 10.7498/aps.40.1862
    [18] 张贻瞳;金新;张长贵;金继荣;姚希贤;吉争鸣;孙志坚;杨森祖. YBa_2Cu_3O_7_薄膜热激发磁通蠕动研究. 物理学报, 1991, 40(7): 1174-1178. doi: 10.7498/aps.40.1174
    [19] 都有为, 邱子强, 唐焕, J. C. WALKER. 用穆斯堡尔效应研究YBa2Cu3O7-δ中的磁有序. 物理学报, 1990, 39(3): 472-478. doi: 10.7498/aps.39.472
    [20] 何振辉, 陈祖耀, 张酣, 张其瑞. Co,Zn元素对YBa2Cu3O7-δ的不同的掺杂效应. 物理学报, 1989, 38(1): 60-67. doi: 10.7498/aps.38.60
计量
  • 文章访问数:  4706
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-14
  • 修回日期:  2016-01-11
  • 刊出日期:  2016-04-05

/

返回文章
返回