搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三元P3HT:PTB7-Th:PCBM聚合物太阳能电池性能的研究

邓丽娟 赵谡玲 徐征 赵玲 王林

引用本文:
Citation:

三元P3HT:PTB7-Th:PCBM聚合物太阳能电池性能的研究

邓丽娟, 赵谡玲, 徐征, 赵玲, 王林

Mechanism of ternary polymer solar cells based on P3HT: PTB7-Th: PCBM

Deng Li-Juan, Zhao Su-Ling, Xu Zheng, Zhao Ling, Wang Lin
PDF
导出引用
  • 将窄带隙聚合物PTB7-Th作为第三种物质掺入到P3HT:PCBM中制备了双给体结构的三元聚合物太阳能电池, 并且通过改变PTB7-Th的浓度来研究PTB7-Th对器件性能的影响. 研究发现, 掺入PTB7-Th后, 聚合物太阳能电池的短路电流和填充因子同时获得了提高, 使器件的光电转换效率得到了改善. 进一步分析表明, PTB7-Th的加入能够拓宽活性层的吸收光谱, 增加活性层吸收的光子数目, 有利于短路电流的提升. PTB7-Th与P3HT之间以电荷转移的形式相互作用, 这种作用方式有利于激子的解离, 从而使器件的填充因子得到了提高.
    Recently, ternary bulk-heterojunction (BHJ) polymer solar cells (PSCs) occur as an attractive strategy with simple fabrication technology to extend the spectrum of wide bandgap polymers into the near infrared region by adding a narrow bandgap sensitizer. In this paper, a series of cells including binary BHJ-PSCs with P3HT:PCBM as the active layer (control cell) and ternary BHJ-PSCs with different PTB7-Th doping concentrations are fabricated to investigate the effect of PTB7-Th on the performance of PSC. The short-circuit current density (Jsc) and fill factor (FF) of the ternary PSCs are simultaneously improved by adding a small amount of PTB7-Th into P3HT:PCBM. The champion photoelectric conversion efficient of ternary PSCs (with 15 wt% PTB7-Th) is 3.71%, which is larger than 2.71% of the control cell. In a ternary device, the absorption region shows a distinct red-shift and the relative absorption intensity from 650 nm to 800 nm is gradually enhanced with the incrtease of PTB7-Th doping concentration. The increased photon harvesting in the solar spectral range results in an increased short-circuit current density. However, despite the fact that the photoluminescence (PL) spectrum of P3HT has a large overlap with the absorption spectra of PTB7-Th, which makes it possible for Frster resonance energy to transfer between P3HT and PTB7-Th, the PL intensity of P3HT at 650 nm is quenched with the increase of PTB7-Th doping concentration while the photoluminescence remains almost the same in the long wavelength region, which suggests that the main mechanism between PTB7-Th and P3HT is photo-induced electron transfer from P3HT to PTB7-Th (hole transfer from PTB7-Th to P3HT), not energy transfer. The PSCs with P3HT:PTB7-Th (1:1) as an active layer display a large Jsc compared with the P3HT-based one. When the concentration of PTB7-Th decreases and the concentration of P3HT is unchanged (P3HT:PTB7-Th 1 : 0.5), the Jsc can be further enhanced. The increased Jsc value of P3HT: PTB7-Th (1:0.5) PSCs confirms that the photo-generated excitons can be dissociated into free charge carriers at the P3HT:PTB7-Th interface and reinforce the charge transfer between P3HT and PTB7-Th. In P3HT:PCBM binary organic solar cell, the photo-generated excitons only can be directly dissociated into free charge carriers at the P3HT:PCBM interface and then transported to the respective electrodes, while incorporating PTB7-Th, the interaction between P3HT and PTB7-Th also makes the photo-generated excitons dissociated at the interface of P3HT:PTB7-Th, and at the interface of PTB7-Th:PCBM. The increasing of excitons dissociated leads to a higher FF. The present study is the first report on utilizing PTB7-Th in P3HT:PCBM PSC.
      通信作者: 赵谡玲, slzhao@bjtu.edu.cn
    • 基金项目: 国家高技术研究发展计划 (批准号: 2013AA032205)、国家自然科学基金(批准号:61575019, 51272022, 11474018)、教育部博士点基金(批准号: 20120009130005, 20130009130001)和中央高校基本科研业务费专项资金(批准号: 2012JBZ001)资助的课题.
      Corresponding author: Zhao Su-Ling, slzhao@bjtu.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA032205), the National Natural Science Foundation of China (Grant Nos. 61575019, 51272022, 11474018), the Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20120009130005, 20130009130001), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2012JBZ001).
    [1]

    Li Z, Wong H C, Huang Z, Zhong H, Tan C H, Tsoi W C, Kim J S, Durrant J R, Cabral J T 2013 Nat. Commun. 4 2227

    [2]

    He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russell T P, Cao Y 2015 Nat. Photon. 9 174

    [3]

    Chen C C, Chang W H, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y 2014 Adv. Mater. 26 5670

    [4]

    Li C, Xue W, Han C F, Qian L, Zhao S L, Yu Z N, Zhang T, Wang L X 2015 Acta Phys. Sin. 64 088401 (in Chinese) [李畅, 薛唯, 韩长峰, 钱磊, 赵谡玲, 喻志农, 章婷, 王玲雪 2015 物理学报 64 088401]

    [5]

    Fan X, Zhao S L, Huang Q Y, Yang Q Q, Gong W, Xu Z 2014 J. Lumin. 152 112

    [6]

    Yang Q Q, Zhao S L, Zhang F J, Yan G, Kong C, Fan X, Zhang Y F, Xu X R 2012 Chin. Phys. B 21 128402

    [7]

    Park E K, Kim J H, Ji I A, Choi H M, Kim J H, Lim K T, Bang J H, Kim Y S 2014 Microelectron. Eng. 119 169

    [8]

    Zhang K, Hu Z Y, Huang L K, Xu J, Zhang J, Zhu Y J 2015 Acta Phys. Sin. 64 178801 (in Chinese) [张科, 胡子阳, 黄利克, 徐洁, 张京, 诸跃进 2015 物理学报 64 178801]

    [9]

    Søndergaard R R, Hösel M, Krebs F C 2013 J. Polym. Sci. Part B: Polym. Phys. 51 16

    [10]

    Huang J S, Goh T, Li X, Sfeir M Y, Bielinski E A, Tomasulo S, Lee M L, Hazari N, Taylor A D 2013 Nat. Photon. 7 479

    [11]

    Yang Y M, Chen W, Dou L, Chang W H, Duan H S, Bob B, Li G, Yang Y 2015 Nat. Photon. 9 190

    [12]

    Gupta V, Bharti V, Kumar M, Chand S, Heeger A J 2015 Adv. Mater. 27 4398

    [13]

    Lu L, Chen W, Xu T, Yu L 2015 Nat. Commun. 6 7327

    [14]

    Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photon. 8 716

    [15]

    Thompson B C, Frechet J M 2008 Angew. Chem. Int. Ed. 47 58

    [16]

    Wu J L, Chen F C, Hsiao Y S, Chien F C, Chen P, Kuo C H, Huang M H, Hsu C S 2011 ACS Nano 5 959

  • [1]

    Li Z, Wong H C, Huang Z, Zhong H, Tan C H, Tsoi W C, Kim J S, Durrant J R, Cabral J T 2013 Nat. Commun. 4 2227

    [2]

    He Z C, Xiao B, Liu F, Wu H B, Yang Y L, Xiao S, Wang C, Russell T P, Cao Y 2015 Nat. Photon. 9 174

    [3]

    Chen C C, Chang W H, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y 2014 Adv. Mater. 26 5670

    [4]

    Li C, Xue W, Han C F, Qian L, Zhao S L, Yu Z N, Zhang T, Wang L X 2015 Acta Phys. Sin. 64 088401 (in Chinese) [李畅, 薛唯, 韩长峰, 钱磊, 赵谡玲, 喻志农, 章婷, 王玲雪 2015 物理学报 64 088401]

    [5]

    Fan X, Zhao S L, Huang Q Y, Yang Q Q, Gong W, Xu Z 2014 J. Lumin. 152 112

    [6]

    Yang Q Q, Zhao S L, Zhang F J, Yan G, Kong C, Fan X, Zhang Y F, Xu X R 2012 Chin. Phys. B 21 128402

    [7]

    Park E K, Kim J H, Ji I A, Choi H M, Kim J H, Lim K T, Bang J H, Kim Y S 2014 Microelectron. Eng. 119 169

    [8]

    Zhang K, Hu Z Y, Huang L K, Xu J, Zhang J, Zhu Y J 2015 Acta Phys. Sin. 64 178801 (in Chinese) [张科, 胡子阳, 黄利克, 徐洁, 张京, 诸跃进 2015 物理学报 64 178801]

    [9]

    Søndergaard R R, Hösel M, Krebs F C 2013 J. Polym. Sci. Part B: Polym. Phys. 51 16

    [10]

    Huang J S, Goh T, Li X, Sfeir M Y, Bielinski E A, Tomasulo S, Lee M L, Hazari N, Taylor A D 2013 Nat. Photon. 7 479

    [11]

    Yang Y M, Chen W, Dou L, Chang W H, Duan H S, Bob B, Li G, Yang Y 2015 Nat. Photon. 9 190

    [12]

    Gupta V, Bharti V, Kumar M, Chand S, Heeger A J 2015 Adv. Mater. 27 4398

    [13]

    Lu L, Chen W, Xu T, Yu L 2015 Nat. Commun. 6 7327

    [14]

    Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photon. 8 716

    [15]

    Thompson B C, Frechet J M 2008 Angew. Chem. Int. Ed. 47 58

    [16]

    Wu J L, Chen F C, Hsiao Y S, Chien F C, Chen P, Kuo C H, Huang M H, Hsu C S 2011 ACS Nano 5 959

  • [1] 保希, 关云霞, 李万娇, 宋家一, 陈丽佳, 徐爽, 彭柯敖, 牛连斌. 载流子阶梯效应调控有机发光二极管三线态激子的解离和散射. 物理学报, 2023, 72(21): 217101. doi: 10.7498/aps.72.20230851
    [2] 颜俊, 王子毅, 曾若生, 邹炳锁. 零维Sb3+掺杂Rb7Bi3Cl16金属卤化物的三重态自陷激子发射. 物理学报, 2021, 70(24): 247801. doi: 10.7498/aps.70.20211024
    [3] 安涛, 薛佳伟, 王永强. 基于苯并二噻吩聚合物所制备的三元光电探测器的特性. 物理学报, 2021, 70(5): 058801. doi: 10.7498/aps.70.20201185
    [4] 周庆中, 郭丰, 张明睿, 尤庆亮, 肖标, 刘继延, 刘翠, 刘学清, 王亮. 载流子复合及能量无序对聚合物太阳电池开路电压的影响. 物理学报, 2020, 69(4): 046101. doi: 10.7498/aps.69.20191699
    [5] 王文静, 李冲, 张毛毛, 高琨. 共轭聚合物内非均匀场驱动的超快激子输运的动力学研究. 物理学报, 2019, 68(17): 177201. doi: 10.7498/aps.68.20190432
    [6] 郭宇琦, 潘俊星, 张进军, 孙敏娜, 王宝凤, 武海顺. 在光敏性三元聚合物混合物中构造 多尺度有序图案. 物理学报, 2016, 65(5): 056401. doi: 10.7498/aps.65.056401
    [7] 金士琪, 徐征, 赵谡玲, 赵蛟, 李杨, 邓丽娟. 基于PTB7,Bis-PC70BM,PC70BM的高效率有机三元太阳能电池. 物理学报, 2016, 65(2): 028801. doi: 10.7498/aps.65.028801
    [8] 刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超. 金属氧化物基杂化型聚合物太阳电池研究. 物理学报, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [9] 李文杰, 杨慧慧, 陈宏善. H2在Al7-团簇解离吸附的理论研究. 物理学报, 2013, 62(5): 053601. doi: 10.7498/aps.62.053601
    [10] 郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖. 掺杂PEDOT ∶PSS对聚合物太阳能电池性能影响的研究. 物理学报, 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
    [11] 徐苗, 彭俊彪. 制膜工艺对聚合物太阳电池性能影响的研究. 物理学报, 2010, 59(3): 2131-2136. doi: 10.7498/aps.59.2131
    [12] 彭瑞祥, 陈冲, 沈薇, 王命泰, 郭颖, 耿宏伟. 非晶/结晶共混对聚合物光伏电池性能的影响. 物理学报, 2009, 58(9): 6582-6589. doi: 10.7498/aps.58.6582
    [13] 雷衍连, 刘荣, 张勇, 谭兴文, 熊祖洪. 磁场对聚合物光电池中电流的影响. 物理学报, 2009, 58(2): 1269-1275. doi: 10.7498/aps.58.1269
    [14] 陈志峰, 王 惠, 张 伟, 沈 涵, 余汉城, 黄锦汪, 赖天树, 计亮年. 激子旋转弛豫对低掺杂卟啉侧链聚合物荧光衰变过程的影响. 物理学报, 2008, 57(8): 5296-5301. doi: 10.7498/aps.57.5296
    [15] 刘 军, 侯延冰, 孙 鑫, 师全民, 李 妍, 靳 辉, 鲁 晶. 电场诱导聚合物分子取向对单线态和三线态激子形成截面的影响. 物理学报, 2007, 56(5): 2845-2851. doi: 10.7498/aps.56.2845
    [16] 高 琨, 付吉永, 刘德胜, 解士杰. 链间耦合对聚合物中双激子态反向极化的影响. 物理学报, 2005, 54(2): 665-668. doi: 10.7498/aps.54.665
    [17] 张锡娟, 李广起, 孙鑫. 聚合物中产生双激子的新通道. 物理学报, 2002, 51(1): 134-137. doi: 10.7498/aps.51.134
    [18] 李宏建, 彭景翠, 许雪梅, 瞿述, 夏辉. 聚合物发光器件中激子的解离与复合效率. 物理学报, 2001, 50(11): 2247-2251. doi: 10.7498/aps.50.2247
    [19] 唐璧玉, 杨国伟, 任志昂, 蔡孟秋. BCN三元化合物的简单生长模型. 物理学报, 2000, 49(3): 518-521. doi: 10.7498/aps.49.518
    [20] 李 蕾, 饶雪松, 孙 鑫, 傅柔励, 褚君浩, 张志林. 电场中高分子的发光和激子的解离. 物理学报, 1998, 47(9): 1536-1541. doi: 10.7498/aps.47.1536
计量
  • 文章访问数:  7201
  • PDF下载量:  458
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-19
  • 修回日期:  2016-01-17
  • 刊出日期:  2016-04-05

/

返回文章
返回