搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相干叠加态的非正交编码诱骗态量子密钥分发

孙伟 尹华磊 孙祥祥 陈腾云

引用本文:
Citation:

基于相干叠加态的非正交编码诱骗态量子密钥分发

孙伟, 尹华磊, 孙祥祥, 陈腾云

Nonorthogonal decoy-state quantum key distribution based on coherent-state superpositions

Sun Wei, Yin Hua-Lei, Sun Xiang-Xiang, Chen Teng-Yun
PDF
导出引用
  • 非正交编码协议和诱骗态方法可以有效地抵御光子数分离攻击. 由于相干叠加态中单光子成分高达90%, 常作为单光子量子比特的替代出现, 用于量子信息过程处理和计算. 本文结合非正交编码协议和诱骗态方法提出一种新的量子密钥分发方案, 光源采用相干叠加态, 推导了单光子的密钥生成速率、计数率下限和误码率的上限, 利用Matlab 模拟了无限多诱骗态情况下和有限多诱骗态情况下密钥生成速率和传输距离的关系, 得出该方案可以提升密钥生成速率并且提高安全传输距离, 验证了该方案可以进一步提高量子密钥分发系统的性能.
    Nonorthogonal coded agreements and decoy state method can effectively protect the photon number against splitting attack. Owing to the fact that the component of single-photon in the coherent-state superposition (CSS) is as high as 90%, CSS has recently emerged as an alternative to single-photon qubits for quantum information processing and metrology. The approximate CSS of small amplitudes is generated by the subtraction of photons from a squeezed vacuum state, and the approximate CSS of large amplitude is generated from Fock state by using a single homodyne detection. Here, we combine both of the methods and propose a new protocol by using the CSS as a light source. We derive the secure key generation rate, the lower bound of count rate and upper bound of error rate of single-photon. We simulate the curves relationship between secure key generation rate and safety transmission distance in the case of an infinite number of decoy states by using matlab. The parameters are given according to the Gobby-Yuan-Shields (GYS) experiment. We infer that the safety transmission distance achieves 147.4 km and the secure key generation rate is much higher than those of other schemes. We also simulate the relationship between key generation rate and safety transmission distance in the case of a limited number of decoy states by using matlab. The parameters are given according to the GYS experiment too. When the N is 1010, the safety transmission distance achieves 144 km; when the N is 109, the safety transmission distance achieves 139 km; when the N is 108, the safety transmission distance achieves 125.9 km. In this paper, we propose the use of CSS as the light source. Combining SARG04 agreements and decoy state, the scheme has the following advantages: first, the scheme which combines SARG04 agreements and decoy state method can effectively resist PNS; second, nonorthogonal decoy-state quantum key distribution based on coherent-state superpositions has a longer safety transmission distance and higher secure key generation rate than nonorthogonal decoy-state quantum key distribution based on weak coherent pulse and nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source; third, nonorthogonal decoy-state quantum key distribution based on coherent-state superpositions is easier to prepare, which just needs one decoy state, than other schemes that require several decoy states. Obviously, our scheme can enhance the performance of quantum key distribution. Nonorthogonal decoy-state quantum key distribution based on coherent-state superpositions will have a very good application with the further development of preparation technology of CSS.
      通信作者: 孙伟, sunwei85@mail.ustc.edu.cn
    • 基金项目: 安徽省自然科学基金(批准号: 1508085J02)资助的课题.
      Corresponding author: Sun Wei, sunwei85@mail.ustc.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Anhui Province, China (Grant No. 1508085J02).
    [1]

    Bennett C H, Brassard 1984 Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE) p175

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [3]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441

    [4]

    Brassard G, Lutkenhaus N, Mor T, Sanders B C 2000 Phys. Rev. Lett. 85 1330

    [5]

    Hwang W Y 2003 Phys. Rev. Lett. 91 057901

    [6]

    Scarani V, Acin A, Ribordy G, Gisin N 2004 Phys. Rev. Lett. 92 057901

    [7]

    Fung C H F, Tamaki K, Lo H K 2006 Phys. Rev. A 73 012337

    [8]

    Li J B, Fang X M 2006 Chin. Phys. Lett. 23 1375

    [9]

    Li J B, Fang X M 2006 Chin. Phys. Lett. 23 775

    [10]

    Adachi Y, Yamamoto T, Koashi M, Imoto N 2007 Phys. Rev. Lett. 99 180503

    [11]

    Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312

    [12]

    Wang Q, Karlsson A 2007 Phys. Rev. A 76 014309

    [13]

    Zhang S L, Zou X B, Li K, Jin C H, Guo G C 2007 Phys. Rev. A 76 044304

    [14]

    Mi J L, Wang F Q, Lin Q Q, Liang R S, Liu S H 2008 Acta Phys. Sin. 57 678 (in Chinese) [米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪 2008 物理学报 57 678]

    [15]

    Hu H P, Wang J D, Huang Y X, Liu S H, Lu W 2010 Acta Phys. Sin. 59 287 (in Chinese) [胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍 2010 物理学报 59 287]

    [16]

    Yin H L, Cao W F, Fu Y, Tang Y L, Liu Y, Chen T Y, Chen Z B 2014 Opt. Lett. 39 5451

    [17]

    Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503

    [18]

    Andersen U L, Ralph T C 2013 Phys. Rev. Lett. 111 050504

    [19]

    Jeong H, Kim M S, Lee J 2001 Phys. Rev. A 64 052308

    [20]

    van Enk S J, Hirota O 2001 Phys. Rev. A 64 022313

    [21]

    Sangouard N, Gisin N, Laurat J, Tualle Brouri R, Grangier P 2010 J. Opt. Soc. Am. B 27 137

    [22]

    Brask J B, Rigas I, Polzik E S, Andersen U L, Srensen A S 2010 Phys. Rev. Lett. 105 160501

    [23]

    Munro W J, Nemoto K, Milburn G J, Braunstein S L 2002 Phys. Rev. A 66 023819

    [24]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mlmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604

    [25]

    Ourjoumtsev A, Jeong H, Tualle-Brouri R, Grangier P 2007 Nature 448 784

    [26]

    Yin H L, Yao F, Chen Z B 2016 Phys. Rev. A 93 032316

    [27]

    Gobby C, Yuan Z L, Shields A J 2004 Appl. Phys. Lett. 84 3762

  • [1]

    Bennett C H, Brassard 1984 Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (New York: IEEE) p175

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [3]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441

    [4]

    Brassard G, Lutkenhaus N, Mor T, Sanders B C 2000 Phys. Rev. Lett. 85 1330

    [5]

    Hwang W Y 2003 Phys. Rev. Lett. 91 057901

    [6]

    Scarani V, Acin A, Ribordy G, Gisin N 2004 Phys. Rev. Lett. 92 057901

    [7]

    Fung C H F, Tamaki K, Lo H K 2006 Phys. Rev. A 73 012337

    [8]

    Li J B, Fang X M 2006 Chin. Phys. Lett. 23 1375

    [9]

    Li J B, Fang X M 2006 Chin. Phys. Lett. 23 775

    [10]

    Adachi Y, Yamamoto T, Koashi M, Imoto N 2007 Phys. Rev. Lett. 99 180503

    [11]

    Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312

    [12]

    Wang Q, Karlsson A 2007 Phys. Rev. A 76 014309

    [13]

    Zhang S L, Zou X B, Li K, Jin C H, Guo G C 2007 Phys. Rev. A 76 044304

    [14]

    Mi J L, Wang F Q, Lin Q Q, Liang R S, Liu S H 2008 Acta Phys. Sin. 57 678 (in Chinese) [米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪 2008 物理学报 57 678]

    [15]

    Hu H P, Wang J D, Huang Y X, Liu S H, Lu W 2010 Acta Phys. Sin. 59 287 (in Chinese) [胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍 2010 物理学报 59 287]

    [16]

    Yin H L, Cao W F, Fu Y, Tang Y L, Liu Y, Chen T Y, Chen Z B 2014 Opt. Lett. 39 5451

    [17]

    Lund A P, Ralph T C, Haselgrove H L 2008 Phys. Rev. Lett. 100 030503

    [18]

    Andersen U L, Ralph T C 2013 Phys. Rev. Lett. 111 050504

    [19]

    Jeong H, Kim M S, Lee J 2001 Phys. Rev. A 64 052308

    [20]

    van Enk S J, Hirota O 2001 Phys. Rev. A 64 022313

    [21]

    Sangouard N, Gisin N, Laurat J, Tualle Brouri R, Grangier P 2010 J. Opt. Soc. Am. B 27 137

    [22]

    Brask J B, Rigas I, Polzik E S, Andersen U L, Srensen A S 2010 Phys. Rev. Lett. 105 160501

    [23]

    Munro W J, Nemoto K, Milburn G J, Braunstein S L 2002 Phys. Rev. A 66 023819

    [24]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mlmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604

    [25]

    Ourjoumtsev A, Jeong H, Tualle-Brouri R, Grangier P 2007 Nature 448 784

    [26]

    Yin H L, Yao F, Chen Z B 2016 Phys. Rev. A 93 032316

    [27]

    Gobby C, Yuan Z L, Shields A J 2004 Appl. Phys. Lett. 84 3762

  • [1] 贺锋涛, 杜迎, 张建磊, 房伟, 李碧丽, 朱云周. Gamma-gamma海洋各向异性湍流下脉冲位置调制无线光通信的误码率研究. 物理学报, 2019, 68(16): 164206. doi: 10.7498/aps.68.20190452
    [2] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究. 物理学报, 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [3] 吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析. 物理学报, 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [4] 王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵. X射线通信系统的误码率分析. 物理学报, 2015, 64(12): 120701. doi: 10.7498/aps.64.120701
    [5] 杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析. 物理学报, 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [6] 周飞, 雍海林, 李东东, 印娟, 任继刚, 彭承志. 基于不同介质间量子密钥分发的研究. 物理学报, 2014, 63(14): 140303. doi: 10.7498/aps.63.140303
    [7] 周媛媛, 张合庆, 周学军, 田培根. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析. 物理学报, 2013, 62(20): 200302. doi: 10.7498/aps.62.200302
    [8] 张浩亮, 贾芳, 徐学翔, 郭琴, 陶向阳, 胡利云. 光子增减叠加相干态在热环境中的退相干. 物理学报, 2013, 62(1): 014208. doi: 10.7498/aps.62.014208
    [9] 周媛媛, 周学军. 基于弱相干态光源的非正交编码被动诱骗态量子密钥分配. 物理学报, 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [10] 魏正军, 万伟, 王金东, 廖常俊, 刘颂豪. 一种基于确定性量子密钥分发误码判据的相位调制器半波电压的精确测定方法. 物理学报, 2011, 60(9): 094216. doi: 10.7498/aps.60.094216.1
    [11] 陈基根, 杨玉军, 俞旭萍, 何龙君, 徐圆圆. 双色激光脉冲辐照叠加态生成强的38 as孤立脉冲. 物理学报, 2011, 60(5): 053206. doi: 10.7498/aps.60.053206
    [12] 曾高荣, 裘正定. 数字水印的鲁棒性评测模型. 物理学报, 2010, 59(8): 5870-5879. doi: 10.7498/aps.59.5870
    [13] 王金东, 魏正军, 张辉, 张华妮, 陈帅, 秦晓娟, 郭健平, 廖常俊, 刘颂豪. 长程光纤传输的时间抖动对相位编码量子密钥分发系统的影响. 物理学报, 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [14] 余振标, 冯久超. 一种混沌扩频序列的产生方法及其优选算法. 物理学报, 2008, 57(3): 1409-1415. doi: 10.7498/aps.57.1409
    [15] 李 园, 李 刚, 张玉驰, 王晓勇, 王军民, 张天才. 计数率和分辨时间对光场统计性质测量的影响——单探测器直接测量的实验分析. 物理学报, 2006, 55(11): 5779-5783. doi: 10.7498/aps.55.5779
    [16] 戴宏毅, 陈平形, 梁林梅, 李承祖. 利用Λ型原子与光场的纠缠态传送腔场的奇偶相干态的叠加态. 物理学报, 2004, 53(2): 441-444. doi: 10.7498/aps.53.441
    [17] 路 洪, 郭光灿. 叠加激发相干态的非经典性质. 物理学报, 1999, 48(9): 1644-1649. doi: 10.7498/aps.48.1644
    [18] 路 洪, 郭光灿. 叠加的奇偶SU(1,1)相干态的统计性质. 物理学报, 1999, 48(8): 1433-1438. doi: 10.7498/aps.48.1433
    [19] 倪致祥. 非简谐振子广义相干态的叠加态. 物理学报, 1997, 46(9): 1687-1692. doi: 10.7498/aps.46.1687
    [20] 黄虎清, 李飞. 一种计算光孤子通信系统误码率的新方法. 物理学报, 1997, 46(12): 2401-2407. doi: 10.7498/aps.46.2401
计量
  • 文章访问数:  5121
  • PDF下载量:  250
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-10
  • 修回日期:  2016-01-11
  • 刊出日期:  2016-04-05

/

返回文章
返回