搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浑浊介质中图像对比度与成像方式的关系

田恒 朱京平 张云尧 管今哥 侯洵

引用本文:
Citation:

浑浊介质中图像对比度与成像方式的关系

田恒, 朱京平, 张云尧, 管今哥, 侯洵

Image contrast for different imaging methods in turbid media

Tian Heng, Zhu Jing-Ping, Zhang Yun-Yao, Guan Jin-Ge, Hou Xun
PDF
导出引用
  • 浑浊介质中图像对比度的物理增强方法一直是研究热点, 目前学者们提出的距离选通成像、偏振差分成像和偏振距离选通成像均能提高图像的对比度, 但提高效果与成像距离的关系尚不明确. 本文分别利用以上三种成像方式及普通强度成像对处于不同浓度浑浊介质中的目标进行成像, 研究了图像强度和对比度随成像距离的变化情况. 结果表明: 从滤除的散射光强来看, 偏振距离选通成像最优, 而偏振差分成像在成像距离较远时优于距离选通成像; 三种成像方式滤除的散射光强值趋于稳定的阈值距离各不相同; 对比度改变相同量时, 偏振距离选通成像对应成像距离的变化量最大, 偏振差分成像次之, 强度成像最小, 且均与散射系数成反比. 本文对浑浊介质成像效果及机理的分析, 对进一步提高浑浊介质中目标的分辨及识别具有重要意义.
    The physics-based methods that can effectively improve the image contrast in turbid media while truly preserving all the detailed information, have received great attention in recent years. The range-gated imaging (RGI), polarization difference method (PD) and polarization-based range-gated technology (PRG) are three effective methods of enhancing the contrast. However, the relationship between the extent of contrast enhancement and the imaging distance for each method has not been revealed. In this paper, a compact disc (CD) plate is set to be in the intralipid with different concentrations contained in a glass cell and imaged by RGI, PD, PRG and raw intensity imaging (RI). The Indian ink is used as the absorber which eliminates the multiple scattered photons and achieves the range-gated technology. In order to investigate the number of the scattered photons filtered out by the 4 methods, the image intensity curves are acquired while the imaging distance, the distance between the target surface and the front surface of the cell, is set to be 26 mm. The results indicate that PRG filters out the largest number of the scattered photons, followed by PD and RGI because the long imaging distance results in more multiple scattering photons. Then the influence of the imaging distance on the image intensity is investigated by the 4 methods. The image intensity is recorded while the imaging distance varies from 22 mm to 30 mm with even increments. Then four sets of intensity curves are plotted against the imaging distance corresponding to RI, RGI, PD and PRG respectively. Based on the RI, three sets of image intensity difference curves of RGI, PD and PRG are also calculated. The tendencies of the curves show that these imaging methods have their own imaging distance thresholds. It implies that the numbers of the photons filtered out by these methods are all constant when their imaging distances exceed their thresholds of 22 mm, 30 mm and 30 mm, respectively. Finally, the effect of the imaging distance on the contrast variation is studied in turbid media with two different scattering coefficient 0.714 cm-1 and 1.19 cm-1. The results show that PRG is superior to other methods in contrast enhancement. In addition, the imaging distances of the 4 methods under the same image contrast are obtained, showing that under the same contrast increment, the PRG presents the largest imaging distance enhancement, followed by PD, RGI and RI. The increase of scattering coefficient could also cause the decrease of the imaging distance. These results can be very useful to understand the mechanism of imaging in turbid media and are of great significance for improving the ability to recognize the target.
      通信作者: 朱京平, jpzhu@xjtu.edu.cn
    • 基金项目: 中央高校基本科研业务费(批准号: xkjc2013008)和北京石油化工学院光机电装备技术北京市重点实验室开放课题基金(批准号: KF2014-01)资助的课题.
      Corresponding author: Zhu Jing-Ping, jpzhu@xjtu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. xkjc2013008) and the Beijing Area Key Lab of Opto-Mechatronic Equipment Technology, China (Grant No. KF2014-01).
    [1]

    Chen S J, Hu Y H, Sun D J, Xu S L 2013 Acta Phys. Sin. 62 204201 (in Chinese) [陈善静, 胡以华, 孙杜娟, 徐世龙 2013 物理学报 62 204201]

    [2]

    Chiang J Y, Chen Y C 2012 IEEE Trans. Image Process. 21 1756

    [3]

    Qi M, Hao Q H, Guan Q J, Kong J, Zhang Y 2015 Optik 126 3400

    [4]

    Li X Y, Sun B, Yu Y Y 2014 Chin. Phys. B 23 064219

    [5]

    Tan C S, Sluzek A, Seet G 2005 Opt. Eng. 44 116002

    [6]

    Huang Y W, Wang X, Jin W Q, Ding K, Li H L, Liu J 2010 Acta Opt. Sin. 30 3177 (in Chinese) [黄有为, 王霞, 金伟其, 丁琨, 李海兰, 刘敬 2010 光学学报 30 3177]

    [7]

    Tong J Y, Tan W J, Si J H, Chen F, Yi W H, Hou X 2012 Chin. Phys. Lett. 29 024207

    [8]

    Cao N W, Liu W Q, Zhang Y J 2000 Acta Phys. Sin. 49 61 (in Chinese) [曹念文, 刘文清, 张玉钧 2000 物理学报 49 61]

    [9]

    Kartazayeva S A, Ni X H, Alfano R R 2005 Opt. Lett. 30 1168

    [10]

    Zhang Y, Zhao H J, Li N 2013 Appl. Opt. 52 1284

    [11]

    Liang J, Ren L Y, Ju H J, Zhang W F, Qu E S 2015 Opt. Express 23 26146

    [12]

    Rowe M P, Pugh E N, Tyo J S 1995 Opt. Lett. 20 608

    [13]

    Zeng N, Jiang X Y, Gao Q, He Y H, Ma H 2009 Appl. Opt. 48 6734

    [14]

    Guan J G, Zhu J P, Tian H, Hou X 2015 Acta Phys. Sin. 64 224203 (in Chinese) [管今哥, 朱京平, 田恒, 侯洵 2015 物理学报 64 224203]

    [15]

    Guan J G, Zhu J P 2013 Opt. Express 21 14152

    [16]

    Guan J G, Zhu J P, Tian H 2015 Chin Phys. Lett. 32 074201

    [17]

    Berrocal E, Sedarsky D L, Paciaroni M E, Meglinski I V, Linne M A 2007 Opt. Express 15 10649

    [18]

    Vanstaveren H J, Moes C J M, Vanmarle J, Prahl S A, Vangemert M J C 1991 Appl. Opt. 30 452016-4-607

    [19]

    Swami M K, Manhas S, Patel H, Gupta P K 2010 Appl. Opt. 49 3458

  • [1]

    Chen S J, Hu Y H, Sun D J, Xu S L 2013 Acta Phys. Sin. 62 204201 (in Chinese) [陈善静, 胡以华, 孙杜娟, 徐世龙 2013 物理学报 62 204201]

    [2]

    Chiang J Y, Chen Y C 2012 IEEE Trans. Image Process. 21 1756

    [3]

    Qi M, Hao Q H, Guan Q J, Kong J, Zhang Y 2015 Optik 126 3400

    [4]

    Li X Y, Sun B, Yu Y Y 2014 Chin. Phys. B 23 064219

    [5]

    Tan C S, Sluzek A, Seet G 2005 Opt. Eng. 44 116002

    [6]

    Huang Y W, Wang X, Jin W Q, Ding K, Li H L, Liu J 2010 Acta Opt. Sin. 30 3177 (in Chinese) [黄有为, 王霞, 金伟其, 丁琨, 李海兰, 刘敬 2010 光学学报 30 3177]

    [7]

    Tong J Y, Tan W J, Si J H, Chen F, Yi W H, Hou X 2012 Chin. Phys. Lett. 29 024207

    [8]

    Cao N W, Liu W Q, Zhang Y J 2000 Acta Phys. Sin. 49 61 (in Chinese) [曹念文, 刘文清, 张玉钧 2000 物理学报 49 61]

    [9]

    Kartazayeva S A, Ni X H, Alfano R R 2005 Opt. Lett. 30 1168

    [10]

    Zhang Y, Zhao H J, Li N 2013 Appl. Opt. 52 1284

    [11]

    Liang J, Ren L Y, Ju H J, Zhang W F, Qu E S 2015 Opt. Express 23 26146

    [12]

    Rowe M P, Pugh E N, Tyo J S 1995 Opt. Lett. 20 608

    [13]

    Zeng N, Jiang X Y, Gao Q, He Y H, Ma H 2009 Appl. Opt. 48 6734

    [14]

    Guan J G, Zhu J P, Tian H, Hou X 2015 Acta Phys. Sin. 64 224203 (in Chinese) [管今哥, 朱京平, 田恒, 侯洵 2015 物理学报 64 224203]

    [15]

    Guan J G, Zhu J P 2013 Opt. Express 21 14152

    [16]

    Guan J G, Zhu J P, Tian H 2015 Chin Phys. Lett. 32 074201

    [17]

    Berrocal E, Sedarsky D L, Paciaroni M E, Meglinski I V, Linne M A 2007 Opt. Express 15 10649

    [18]

    Vanstaveren H J, Moes C J M, Vanmarle J, Prahl S A, Vangemert M J C 1991 Appl. Opt. 30 452016-4-607

    [19]

    Swami M K, Manhas S, Patel H, Gupta P K 2010 Appl. Opt. 49 3458

  • [1] 刘俊杰, 盛泉, 王盟, 张钧翔, 耿兴宁, 石争, 王爱华, 史伟, 姚建铨. 基于腔内球差选模产生高阶拉盖尔-高斯模式激光. 物理学报, 2022, 71(1): 014204. doi: 10.7498/aps.71.20211514
    [2] 姚军财, 申静. 基于图像内容对比感知的图像质量客观评价. 物理学报, 2020, 69(14): 148702. doi: 10.7498/aps.69.20200335
    [3] 吴元庆, 王洋, 张延涛, 张宇峰, 刘春梅. 对比度阈值函数修正对于NVThermIP模型的影响. 物理学报, 2018, 67(21): 210702. doi: 10.7498/aps.67.20180493
    [4] 范启蒙, 尹成友. 高对比度目标的电磁逆散射超分辨成像. 物理学报, 2018, 67(14): 144101. doi: 10.7498/aps.67.20180266
    [5] 王田, 牛明生, 步苗苗, 韩培高, 郝殿中, 杨敬顺, 宋连科. 新型双通道差分偏振干涉成像系统. 物理学报, 2018, 67(10): 100701. doi: 10.7498/aps.67.20172691
    [6] 周丽萍, 李培, 潘聪, 郭立, 丁志华, 李鹏. 高灵敏、高对比度无标记三维光学微血管造影系统与脑科学应用研究. 物理学报, 2016, 65(15): 154201. doi: 10.7498/aps.65.154201
    [7] 李祺伟, 张淳民, 魏宇童, 陈清颖. 偏振型干涉成像光谱仪中Savart偏光镜通光孔径的研究. 物理学报, 2015, 64(22): 224206. doi: 10.7498/aps.64.224206
    [8] 鲁昌兵, 许鹏, 鲍杰, 王朝辉, 张凯, 任杰, 刘艳芬. 快中子照相模拟分析与实验验证. 物理学报, 2015, 64(19): 198702. doi: 10.7498/aps.64.198702
    [9] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪Ⅱ.光学设计与分析. 物理学报, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [10] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪I.概念原理与操作. 物理学报, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [11] 郑驰超, 彭虎, 韩志会. 互相关自适应加权的医学超声成像算法研究. 物理学报, 2014, 63(14): 148702. doi: 10.7498/aps.63.148702
    [12] 宋洪胜, 庄桥, 刘桂媛, 秦希峰, 程传福. 菲涅耳深区散斑强度统计特性及演化. 物理学报, 2014, 63(9): 094201. doi: 10.7498/aps.63.094201
    [13] 唐远河, 吴勇. 基于液晶和DSP的强光局部选通智能网络摄像系统研究. 物理学报, 2013, 62(21): 214210. doi: 10.7498/aps.62.214210
    [14] 刘雪峰, 姚旭日, 李明飞, 俞文凯, 陈希浩, 孙志斌, 吴令安, 翟光杰. 强度涨落在热光鬼成像中的作用. 物理学报, 2013, 62(18): 184205. doi: 10.7498/aps.62.184205
    [15] 常宏, 杨福桂, 董磊, 王安廷, 谢建平, 明海. 激光光斑形状和尺寸对扫描显示中散斑对比度的影响. 物理学报, 2010, 59(7): 4634-4639. doi: 10.7498/aps.59.4634
    [16] 易煦农, 胡 巍, 罗海陆, 朱 静. 用高阶对比度研究光束的小尺度自聚焦. 物理学报, 2005, 54(2): 749-754. doi: 10.7498/aps.54.749
    [17] 宋洪胜, 程传福, 张宁玉, 任晓荣, 滕树云, 徐至展. 强散射体产生的像面散斑对比度与随机表面及成像系统关系的研究. 物理学报, 2005, 54(2): 669-676. doi: 10.7498/aps.54.669
    [18] 张 斌, 刘言军, 徐克璹. 全息聚合物弥散液晶器件电光特性的研究. 物理学报, 2004, 53(6): 1850-1855. doi: 10.7498/aps.53.1850
    [19] 曹念文, 刘文清, 张玉钧. 偏振成像技术提高成像清晰度、成像距离的定量研究. 物理学报, 2000, 49(1): 61-66. doi: 10.7498/aps.49.61
    [20] 赵理曾, 马啸, 秦勇, 卢振中, 聂玉昕, 王夺元, 胡敏学. 光子选通光谱烧孔的全息检测与图像存贮. 物理学报, 1997, 46(8): 1487-1492. doi: 10.7498/aps.46.1487
计量
  • 文章访问数:  5649
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-22
  • 修回日期:  2016-01-05
  • 刊出日期:  2016-04-05

/

返回文章
返回