搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光光源线宽对外差探测性能的影响

李成强 王挺峰 张合勇 谢京江 刘立生 郭劲

引用本文:
Citation:

激光光源线宽对外差探测性能的影响

李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲

Effect of laser linewidth on the performance of heterodyne detection

Li Cheng-Qiang, Wang Ting-Feng, Zhang He-Yong, Xie Jing-Jiang, Liu Li-Sheng, Guo Jin
PDF
导出引用
  • 本文根据统计理论分析了激光线宽对外差探测结果的影响, 并讨论了激光线宽对杨氏干涉条纹对比度的影响. 本文基于解析结果做了数值仿真, 所得结果表明激光线宽增加时, 外差探测方式仍可以检测到中频信号, 但在线宽较大时, 受噪声影响无法准确地提取到中频频率. 为验证理论分析结果, 使用线宽为1 MHz的激光光源进行了8.1 km外场实验, 实验结果与数值分析结论一致, 即不会因为线宽增加而无法检测到中频信号. 文中所得结论对于外差探测光源的选择有重要指导意义, 因此根据测量目标的特性和测量要求, 可按照文中结论评估光源的线宽指标.
    According to the statistical theory, the influence of laser linewidth on the performance of optical heterodyne system is studied. Also, the effect of laser linewidth on the visibility of fringe pattern is discussed. The expressions of self-correlation function power-spectrum and definition of visibility of fringe patterns are obtained in this paper. Based on the analytical expressions, the numerical simulation is performed. The obtained results demonstrate that the laser linewidth influences the visibility of fringe patterns according to the result shown in Fig. 3, and that the intermediate frequency can be still detected by heterodyne detection technique as the laser linewidth increases. For different linewidths, the measurement of intermediate frequency is accurate without the influence of noise as the delay d between the received signal and locally generated signal is less than the coherence time c of laser source. If the delay d is greater than the coherence time c, the full width at half maximum of intermediate frequency in the frequency spectrum of the output signal of photodetector will broaden as the laser linewidth increases. However, for a wide linewidth, the measurement of intermediate frequency is inaccurate due to the influence of noise when the delay d is greater than the coherence time c. The wider the linewidth, the less accurate the measurement of intermediate frequency will be. In order to check the correctness of theoretical results, an experiment is carried out by using a laser with a linewidth of 1 MHz, which has an 8.1 km channel path. In our experimental set-up, a cooperative target is employed to modulate and reflect the transmitted beam. In this way, an echo signal is received. The mixing process of the received signal and local signal on the photodetector surface produces an electrical current known as the photomixing current. A spectrum analyzer is used to observe the output signal of detector. The obtained spectrum shows that intermediate frequency can be checked, which is in agreement with the theoretical result. In this work, the obtained conclusions can be directly used to choose a proper laser for optical heterodyne system. According to the target characteristics and measurement requirements, and by following the conclusions obtained in this paper, the laser linewidth can be evaluated.
      通信作者: 李成强, hitwhfeixiang@msn.cn
      Corresponding author: Li Cheng-Qiang, hitwhfeixiang@msn.cn
    [1]

    Kingston R 1977 Optics News 3 27

    [2]

    Cohen S C 1975 Appl. Opt. 14 1953

    [3]

    Li Y C, Wang C H, Qu Y, Gao L, et al. 2011 Chin. Phys. B 20 014208

    [4]

    Luo Y, Feng G Y, Liu J, et al. 2014 Chinese J. Lasers 183 (in Chinese) [罗韵, 冯国英, 刘建 等 2014 中国激光 183]

    [5]

    Swanson E A, Carter G M, Bernays D J, et al. 1989 Appl. Opt. 28 3918

    [6]

    Mosley D E, Matson C L, Czyzak S R 1998 SPIE Conference on Laser Radar Technology and Apglications III (Florida: Oriando) 243

    [7]

    Zhou B K, Gao Y Z, Chen T R, et al. 2009 Principles of Lasers (6th Ed.) (National Defense Industry Press) (in Chinese) [周炳琨, 高以智, 陈倜嵘 等 2009 激光原理(第六版) (国防工业出版社)]

    [8]

    Mercer L B 1991 J. Lightwave Technol. 9 485

    [9]

    Richter L, Mandelberg H, Kruger M, et al. 1986 IEEE J. Quantum Electron. 22 2070

    [10]

    Gallion P B, Debarge G 1984 IEEE J. Quantum Electron. 20 343

    [11]

    Cai L Z 2007 Optics (3rd Ed) (Beijing: Science Press) (in Chinese) [蔡履中 2007 光学 (第三版) (北京: 科学出版社)]

    [12]

    Hao Y Q, Ye Q, Pan Z Q, et al. 2013 Chin. Phys. B 22 074214

    [13]

    An Y Y, Liu J F, Li Q H, et al. 2007 Optoelectronic Technology (2nd Ed.) (Beijing: Publishing House of Electronics Inducstry) (in Chinese) [安毓英, 刘继芳, 李庆辉 等 2007 光电子技术 (第二版) (北京: 电子工业出版社)]

    [14]

    Wang Y D, Wang J 2011 Fundamentals of Random Signal Analysis (3rd Ed) (Publishing House of Electronics Inducstry) (in Chinese) [王永德, 王军 2011 随机信号分析基础 (第三版) (北京: 电子工业出版社)]

    [15]

    Rowe H E 1965 Signal and Noise in Communication Systems (Princeton, NJ: van Nostrand)

  • [1]

    Kingston R 1977 Optics News 3 27

    [2]

    Cohen S C 1975 Appl. Opt. 14 1953

    [3]

    Li Y C, Wang C H, Qu Y, Gao L, et al. 2011 Chin. Phys. B 20 014208

    [4]

    Luo Y, Feng G Y, Liu J, et al. 2014 Chinese J. Lasers 183 (in Chinese) [罗韵, 冯国英, 刘建 等 2014 中国激光 183]

    [5]

    Swanson E A, Carter G M, Bernays D J, et al. 1989 Appl. Opt. 28 3918

    [6]

    Mosley D E, Matson C L, Czyzak S R 1998 SPIE Conference on Laser Radar Technology and Apglications III (Florida: Oriando) 243

    [7]

    Zhou B K, Gao Y Z, Chen T R, et al. 2009 Principles of Lasers (6th Ed.) (National Defense Industry Press) (in Chinese) [周炳琨, 高以智, 陈倜嵘 等 2009 激光原理(第六版) (国防工业出版社)]

    [8]

    Mercer L B 1991 J. Lightwave Technol. 9 485

    [9]

    Richter L, Mandelberg H, Kruger M, et al. 1986 IEEE J. Quantum Electron. 22 2070

    [10]

    Gallion P B, Debarge G 1984 IEEE J. Quantum Electron. 20 343

    [11]

    Cai L Z 2007 Optics (3rd Ed) (Beijing: Science Press) (in Chinese) [蔡履中 2007 光学 (第三版) (北京: 科学出版社)]

    [12]

    Hao Y Q, Ye Q, Pan Z Q, et al. 2013 Chin. Phys. B 22 074214

    [13]

    An Y Y, Liu J F, Li Q H, et al. 2007 Optoelectronic Technology (2nd Ed.) (Beijing: Publishing House of Electronics Inducstry) (in Chinese) [安毓英, 刘继芳, 李庆辉 等 2007 光电子技术 (第二版) (北京: 电子工业出版社)]

    [14]

    Wang Y D, Wang J 2011 Fundamentals of Random Signal Analysis (3rd Ed) (Publishing House of Electronics Inducstry) (in Chinese) [王永德, 王军 2011 随机信号分析基础 (第三版) (北京: 电子工业出版社)]

    [15]

    Rowe H E 1965 Signal and Noise in Communication Systems (Princeton, NJ: van Nostrand)

  • [1] 赵辛未, 吕俊鹏, 倪振华. 铅卤钙钛矿法布里-珀罗谐振腔激光器. 物理学报, 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [2] 李坤, 杨苏辉, 廖英琦, 林学彤, 王欣, 张金英, 李卓. 强度调制532 nm激光水下测距. 物理学报, 2021, 70(8): 084203. doi: 10.7498/aps.70.20201612
    [3] 孙伟, 安维明, 仲佳勇. 磁场对激光驱动Kelvin-Helmholtz不稳定性影响的二维数值研究. 物理学报, 2020, 69(24): 244701. doi: 10.7498/aps.69.20201167
    [4] 晏春回, 王挺峰, 张合勇, 吕韬, 吴世松. 近距离激光外差探测光学极限位移分辨率. 物理学报, 2017, 66(23): 234208. doi: 10.7498/aps.66.234208
    [5] 张永燕, 吴九汇, 曾涛, 钟宏民. 利用激光光梯度力消除气溶胶雾霾粒子的机理研究. 物理学报, 2016, 65(7): 074203. doi: 10.7498/aps.65.074203
    [6] 韩祥临, 赵振江, 程荣军, 莫嘉琪. 飞秒脉冲激光对纳米金属薄膜传导模型的解. 物理学报, 2013, 62(11): 110202. doi: 10.7498/aps.62.110202
    [7] 孙兵兵, 吴博, 王辉, 黄志祥, 吴先良. 基于四能级原子系统模型增益媒质激光原理研究. 物理学报, 2012, 61(22): 220206. doi: 10.7498/aps.61.220206
    [8] 于文英, 安里千. 锥柱复合目标激光距离多普勒像分析模型. 物理学报, 2012, 61(21): 218703. doi: 10.7498/aps.61.218703
    [9] 白岩, 赵卫疆, 任德明, 曲彦臣, 刘闯, 袁晋鹤, 钱黎明, 陈振雷. 基于有源Fabry-Perot腔的激光脉冲延时自外差研究. 物理学报, 2012, 61(9): 094218. doi: 10.7498/aps.61.094218
    [10] 张永康, 于水生, 姚红兵, 王飞, 任爱国, 裴旭. 强脉冲激光在AZ31B镁合金中诱导冲击波的实验研究. 物理学报, 2010, 59(8): 5602-5605. doi: 10.7498/aps.59.5602
    [11] 李彦超, 章亮, 杨彦玲, 高龙, 徐博, 王春晖. 多光束激光外差高精度测量玻璃厚度的方法. 物理学报, 2009, 58(8): 5473-5478. doi: 10.7498/aps.58.5473
    [12] 张红鹰, 吴师岗. 飞秒激光作用下薄膜破坏的力学过程. 物理学报, 2007, 56(9): 5314-5317. doi: 10.7498/aps.56.5314
    [13] 莫嘉琪, 张伟江, 何 铭. 激光脉冲放大器传输波的计算. 物理学报, 2006, 55(7): 3233-3236. doi: 10.7498/aps.55.3233
    [14] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率. 物理学报, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [15] 顾永玉, 张永康, 张兴权, 史建国. 约束层对激光驱动冲击波压力影响机理的理论研究. 物理学报, 2006, 55(11): 5885-5891. doi: 10.7498/aps.55.5885
    [16] 肖 瑞, 侯 静, 姜宗福. 光纤激光器阵列相干合成中的位相探测与校正方法研究. 物理学报, 2006, 55(1): 184-187. doi: 10.7498/aps.55.184
    [17] 陈岁元, 刘常升, 李慧莉, 崔 彤. 非晶Fe73.5Cu1Nb3Si13.5B9合金激光纳米化的超精细结构研究. 物理学报, 2005, 54(9): 4157-4163. doi: 10.7498/aps.54.4157
    [18] 石春花, 邱锡钧, 安伟科, 李儒新. μ-子催化核聚变中强脉冲激光对介原子μ3He的电离. 物理学报, 2005, 54(9): 4087-4091. doi: 10.7498/aps.54.4087
    [19] 颜森林, 迟泽英, 陈文建, 王泽农. 激光混沌同步和解码以及优化. 物理学报, 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
    [20] 蔺秀川, 邵天敏. 利用集总参数法测量材料对激光的吸收率. 物理学报, 2001, 50(5): 856-859. doi: 10.7498/aps.50.856
计量
  • 文章访问数:  6475
  • PDF下载量:  306
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-08
  • 修回日期:  2016-01-05
  • 刊出日期:  2016-04-05

/

返回文章
返回