搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅单粒子位移损伤多尺度模拟研究

唐杜 贺朝会 臧航 李永宏 熊涔 张晋新 张鹏 谭鹏康

引用本文:
Citation:

硅单粒子位移损伤多尺度模拟研究

唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康

Multi-scale simulations of single particle displacement damage in silicon

Tang Du, He Chao-Hui, Zang Hang, Li Yong-Hong, Xiong Cen, Zhang Jin-Xin, Zhang Peng, Tan Peng-Kang
PDF
导出引用
  • 本文结合分子动力学方法和动力学蒙特卡罗方法, 研究了单个粒子入射硅引起的位移损伤缺陷的产生和演化过程; 基于Shockley-Read-Hall理论计算了单个粒子入射引起的位移损伤缺陷导致的泄漏电流增加及其演化过程, 比较了缺陷退火因子与泄漏电流退火因子之间的差异, 并将计算结果与实验值进行了对比. 结果表明, 计算泄漏电流时, 仅考虑一种缺陷的情况下缺陷退火因子与泄漏电流退火因子相同, 考虑两种缺陷类型情况下二者在数值上有所区别, 但缺陷退火因子仍能在一定程度上反映泄漏电流的退火行为. 分子动力学模拟中采用Stillinger-Weber势函数和Tersoff势函数时缺陷退火因子和泄漏电流退火因子与实验结果一致, 基于Stillinger-Weber势函数的计算结果与实验值更为接近.
    Silicon devices are extensively used in space and other radiation-rich environments. They must withstand radiation damage processes that occur over wide range of time and length. Ion implantation technique, one of the most important process in the fabrication of integrated circuits, can also create the displacement damage in silicon lattice. Exposure of silicon wafer or silicon device to radiation causes the creations of variety of defects and has adverse effects on the electrical properties of devices. Although phenomenological studies on the radiation effects in silicon have been carried out in the past decades, the features of multi-scale of displacement damage make it difficult to characterize the defect production and evolution experimentally or theoretically. Recently, the silicon device with ultra-low leakage current was shown to be very sensitive to the permanent displacement damage induced by single particles, called single particle displacement damage (SPDD) event. To the best of our knowledge, the investigation of single particle displacement damage (SPDD) event in silicon device by the coupling molecular dynamics (MD) and kinetic Monte Carlo (KMC) techniques has not yet been reported so far. In this paper, MD simulations are combined with KMC simulations to investigate the formation and evolution of SPDD event in silicon. In MD simulations, Tersoff potential is used to describe the Si-Si atomic interactions. The potential smoothly joins to Ziegler-Biersack-Littmark potential that describes the energetic short range interactions well. All atoms in the MD cell are allowed to evolve 0.205 ns to track the damage production and short-term evolution. A multi-phase simulations are performed to improve the simulation efficiency. Then the nearest neighbor criterion is employed to identify the configurations and spatial distributions of interstitials and vacancies, which are used as input in KMC simulations to study the thermal diffusion and interactions of those defects in the time interval from 0.205 ns to 1000 s. The results show that no defects are missing when transferring from MD to KMC simulation and the whole damage obtained in MD simulations is reproduced in KMC simulations. Since the production and evolution of defects are simulated, the SPDD current could be calculated based on Shockley-Read-Hall theory. We derive the formula to calculate the SPDD current and its annealing factor related to interstitials and vacancies in the depletion region. The calculated annealing factors of defects are compared with the annealing factors of SPDD currents and also with the experimental results. The results show that an annealing factor of defects has the same value as the annealing factor of an SPDD current when only one type of defect is considered in the calculations, while there are some differences between these two annealing factors when two and more types of defects are considered. The annealing factors of defects can be used to represent the annealing behaviors of SPDD currents since the divergences between these two annealing factors are not significant. Finally, SPDD current annealing factor based MD simulation results obtained with Tersoff potential are compared with the results in our previous study in which the Stillinger-Weber potential is used, and also compared with experimental results. The comparisons show that the simulation results with considering both Stillinger- Weber potential and Tersoff potential are in good agreement with experimental results. Compared with the calculated results with considering the Tersoff potential, the results with considering the Stillinger-Weber potential are closer to experimental results.
      通信作者: 贺朝会, hechaohui@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11175138)、国家自然科学基金重点项目(批准号: 11235008)、国家重点实验室项目(批准号: 20140134)和高等学校博士学科点专项科研基金(批准号: 20130201120090)资助的课题.
      Corresponding author: He Chao-Hui, hechaohui@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11175138), the Key Program of the National Natural Science Foundation of China (Grant No. 11235008), the State Key Laboratory Program, China (Grant No. 20140134), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20130201120090).
    [1]

    Zhang Z G, Liu J, Hou M D, Sun Y M, Zhao F Z, Liu G, Han Z S, Geng C, Liu J D, Xi K, Duan J L, Yao H J, Mo D, Luo J, Gu S, Liu T Q 2013 Chin. Phys. B 22 096103

    [2]

    Yu J T, Chen S M, Chen J J, Huang P C 2015 Chin. Phys. B 24 119401

    [3]

    Bogaerts J, Dierickx B, Mertens R 2002 IEEE Trans. Nucl. Sci. 49 1513

    [4]

    Goiffon V, Magnan P, Saint-P O, Bernard F, Rolland G 2009 Nucl. Instrum. Methods Phys. Res. A 610 225

    [5]

    Battaglia M, Bisello D, Contarato D, Denes P, Doering D, Giubilato P, Kim T S, Mattiazzoc S, Radmilovicb V, Zaluskya S 2010 Nucl. Instrum. Methods Phys. Res. A 624 425

    [6]

    Virmontois C, Goiffon V, Magnan P, Girard S, Inguimbert C, Petit S, Rolland G, Saint-Pe O 2010 IEEE Trans. Nucl. Sci. 57 3101

    [7]

    Doeringa D, Deveauxa M, Domachowskia M, Dritsaa C, Froehlicha I, Koziela M, Muentza C, Ottersbacha S, Wagnerc F M, Strotha J 2011 Nucl. Instrum. Methods Phys. Res. A 658 133

    [8]

    Wang Z J, Tang B Q, Xiao Z G, Liu M B, Huang S Y, Zhang Y 2010 Acta Phys. Sin. 59 4136 (in Chinese) [王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇 2010 物理学报 59 4136]

    [9]

    Zeng J Z, Li Y D, Wen L, He C F, Guo Q, Wang B, Ma L Y, Wei Y, Wang H J, Wu D Y, Wang F, Zhou H 2015 Acta Phys. Sin. 64 194208 (in Chinese) [曾骏哲, 李豫东, 文林, 何承发, 郭旗, 汪波, 玛丽娅, 魏莹, 王海娇, 武大猷, 王帆, 周航 2015 物理学报 64 194208]

    [10]

    Auden E C, Weller R A, Mendenhall M H, Reed R A, Schrimpf R D, Hooten N C, King M P 2012 IEEE Trans. Nucl. Sci. 59 3054

    [11]

    Auden E C, Weller R A, Schrimpf R D, Mendenhall M H, Reed R A, Hooten N C, Bennett W G, King M P 2013 IEEE Trans. Nucl. Sci. 60 4094

    [12]

    Raine M, Goiffon V, Paillet P, Duhamel O, Girard S, Gaillardin M, Virmontois C, Belloir J, Richard N, Magnan P 2014 IEEE Trans. Nucl. Sci. 61 2826

    [13]

    Otto G, Gerhard H, Grtner K 2003 Nucl. Instrum. Methods Phys. Res. B 202 114

    [14]

    Borodin V A 2012 Nucl. Instrum. Methods Phys. Res. B 282 33

    [15]

    Nordlund K, Averback M G S, Tarus J 1998 Phys. Rev. B 57 7556

    [16]

    Delarubia T D, Gilmer G H 1995 Phys. Rev. Lett. 74 2507

    [17]

    Jaraiz M, Rubio E, Castrillo P, Pelaz L, Bailon L, Barbolla J, Gilmer G H, Rafferty C S 2000 Mat. Sci. Semicon. Proc. 3 59

    [18]

    Martin-Bragado I, Riverab A, Vallesb G, Gomez-Sellesa J L, Caturla M J 2013 Comput. Phys. Commun. 184 2703

    [19]

    Nordlund K, Djurabekova F 2014 J. Comput. Electron 13 122

    [20]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [21]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [22]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Matter (Vol.1)(New York: Pergamon Press) p25ff

    [23]

    Farrell D E, Bernstein N, Liu W K 2009 J. Nucl. Mater. 385 572

    [24]

    Srour J R, Hartmann R A 1989 IEEE Trans. Nucl. Sci. 36 1825

    [25]

    Lazanu I, Lazanu S 2006 Phys. Scripta 74 201

    [26]

    Tang D, Martin-Bragado I, He C H 2015 International Conference on Radiation Effects of Electronic Devices Proceedings Harbin, China, October 19-21, 2015 p6

    [27]

    Aboy M, Santos I, Pelaz L 2015 J. Comput. Electron 13 40

  • [1]

    Zhang Z G, Liu J, Hou M D, Sun Y M, Zhao F Z, Liu G, Han Z S, Geng C, Liu J D, Xi K, Duan J L, Yao H J, Mo D, Luo J, Gu S, Liu T Q 2013 Chin. Phys. B 22 096103

    [2]

    Yu J T, Chen S M, Chen J J, Huang P C 2015 Chin. Phys. B 24 119401

    [3]

    Bogaerts J, Dierickx B, Mertens R 2002 IEEE Trans. Nucl. Sci. 49 1513

    [4]

    Goiffon V, Magnan P, Saint-P O, Bernard F, Rolland G 2009 Nucl. Instrum. Methods Phys. Res. A 610 225

    [5]

    Battaglia M, Bisello D, Contarato D, Denes P, Doering D, Giubilato P, Kim T S, Mattiazzoc S, Radmilovicb V, Zaluskya S 2010 Nucl. Instrum. Methods Phys. Res. A 624 425

    [6]

    Virmontois C, Goiffon V, Magnan P, Girard S, Inguimbert C, Petit S, Rolland G, Saint-Pe O 2010 IEEE Trans. Nucl. Sci. 57 3101

    [7]

    Doeringa D, Deveauxa M, Domachowskia M, Dritsaa C, Froehlicha I, Koziela M, Muentza C, Ottersbacha S, Wagnerc F M, Strotha J 2011 Nucl. Instrum. Methods Phys. Res. A 658 133

    [8]

    Wang Z J, Tang B Q, Xiao Z G, Liu M B, Huang S Y, Zhang Y 2010 Acta Phys. Sin. 59 4136 (in Chinese) [王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇 2010 物理学报 59 4136]

    [9]

    Zeng J Z, Li Y D, Wen L, He C F, Guo Q, Wang B, Ma L Y, Wei Y, Wang H J, Wu D Y, Wang F, Zhou H 2015 Acta Phys. Sin. 64 194208 (in Chinese) [曾骏哲, 李豫东, 文林, 何承发, 郭旗, 汪波, 玛丽娅, 魏莹, 王海娇, 武大猷, 王帆, 周航 2015 物理学报 64 194208]

    [10]

    Auden E C, Weller R A, Mendenhall M H, Reed R A, Schrimpf R D, Hooten N C, King M P 2012 IEEE Trans. Nucl. Sci. 59 3054

    [11]

    Auden E C, Weller R A, Schrimpf R D, Mendenhall M H, Reed R A, Hooten N C, Bennett W G, King M P 2013 IEEE Trans. Nucl. Sci. 60 4094

    [12]

    Raine M, Goiffon V, Paillet P, Duhamel O, Girard S, Gaillardin M, Virmontois C, Belloir J, Richard N, Magnan P 2014 IEEE Trans. Nucl. Sci. 61 2826

    [13]

    Otto G, Gerhard H, Grtner K 2003 Nucl. Instrum. Methods Phys. Res. B 202 114

    [14]

    Borodin V A 2012 Nucl. Instrum. Methods Phys. Res. B 282 33

    [15]

    Nordlund K, Averback M G S, Tarus J 1998 Phys. Rev. B 57 7556

    [16]

    Delarubia T D, Gilmer G H 1995 Phys. Rev. Lett. 74 2507

    [17]

    Jaraiz M, Rubio E, Castrillo P, Pelaz L, Bailon L, Barbolla J, Gilmer G H, Rafferty C S 2000 Mat. Sci. Semicon. Proc. 3 59

    [18]

    Martin-Bragado I, Riverab A, Vallesb G, Gomez-Sellesa J L, Caturla M J 2013 Comput. Phys. Commun. 184 2703

    [19]

    Nordlund K, Djurabekova F 2014 J. Comput. Electron 13 122

    [20]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [21]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [22]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Matter (Vol.1)(New York: Pergamon Press) p25ff

    [23]

    Farrell D E, Bernstein N, Liu W K 2009 J. Nucl. Mater. 385 572

    [24]

    Srour J R, Hartmann R A 1989 IEEE Trans. Nucl. Sci. 36 1825

    [25]

    Lazanu I, Lazanu S 2006 Phys. Scripta 74 201

    [26]

    Tang D, Martin-Bragado I, He C H 2015 International Conference on Radiation Effects of Electronic Devices Proceedings Harbin, China, October 19-21, 2015 p6

    [27]

    Aboy M, Santos I, Pelaz L 2015 J. Comput. Electron 13 40

  • [1] 白雨蓉, 李培, 何欢, 刘方, 李薇, 贺朝会. 近地轨道质子和α粒子入射InP产生的位移损伤模拟. 物理学报, 2024, 73(5): 052401. doi: 10.7498/aps.73.20231499
    [2] 何欢, 白雨蓉, 田赏, 刘方, 臧航, 柳文波, 李培, 贺朝会. 质子入射AlxGa1–xN 材料的位移损伤模拟. 物理学报, 2024, 73(5): 052402. doi: 10.7498/aps.73.20231671
    [3] 彭超, 雷志锋, 张战刚, 何玉娟, 马腾, 蔡宗棋, 陈义强. 中子辐射导致的SiC功率器件漏电增加特性研究. 物理学报, 2023, 72(18): 186102. doi: 10.7498/aps.72.20230976
    [4] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [5] 白雨蓉, 李永宏, 刘方, 廖文龙, 何欢, 杨卫涛, 贺朝会. 空间重离子入射磷化铟的位移损伤模拟. 物理学报, 2021, 70(17): 172401. doi: 10.7498/aps.70.20210303
    [6] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [7] 邓小庆, 邓联文, 何伊妮, 廖聪维, 黄生祥, 罗衡. InGaZnO薄膜晶体管泄漏电流模型. 物理学报, 2019, 68(5): 057302. doi: 10.7498/aps.68.20182088
    [8] 王翔, 陈雷雷, 曹艳荣, 羊群思, 朱培敏, 杨国锋, 王福学, 闫大为, 顾晓峰. Ni/Au/n-GaN肖特基二极管可导位错的电学模型. 物理学报, 2018, 67(17): 177202. doi: 10.7498/aps.67.20180762
    [9] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅. 质子辐照导致科学级电荷耦合器件电离效应和位移效应分析. 物理学报, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [10] 李维勤, 刘丁, 张海波. 高能电子照射绝缘样品的泄漏电流特性. 物理学报, 2014, 63(22): 227303. doi: 10.7498/aps.63.227303
    [11] 车驰, 柳青峰, 马晶, 周彦平. 位移效应对量子点激光器的性能影响. 物理学报, 2013, 62(9): 094219. doi: 10.7498/aps.62.094219
    [12] 卓青青, 刘红侠, 杨兆年, 蔡惠民, 郝跃. 偏置条件对SOI NMOS器件总剂量辐照效应的影响. 物理学报, 2012, 61(22): 220702. doi: 10.7498/aps.61.220702
    [13] 马晶, 车驰, 于思源, 谭丽英, 周彦平, 王健. 光纤布拉格光栅辐射损伤及其对光谱特性的影响. 物理学报, 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [14] 马晶, 车驰, 韩琦琦, 周彦平, 谭立英. 位移辐射效应对量子阱激光器性能的影响. 物理学报, 2012, 61(21): 214211. doi: 10.7498/aps.61.214211
    [15] 王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇. GaN HEMT栅边缘电容用于缺陷的研究. 物理学报, 2011, 60(9): 097101. doi: 10.7498/aps.60.097101
    [16] 林丽艳, 杜磊, 包军林, 何亮. 光电耦合器电离辐射损伤电流传输比1/f噪声表征. 物理学报, 2011, 60(4): 047202. doi: 10.7498/aps.60.047202
    [17] 王思浩, 鲁庆, 王文华, 安霞, 黄如. 超陡倒掺杂分布对超深亚微米金属-氧化物-半导体器件总剂量辐照特性的改善. 物理学报, 2010, 59(3): 1970-1976. doi: 10.7498/aps.59.1970
    [18] 李盛涛, 成鹏飞, 李建英. Al2O3单晶三明治结构的高温热激发电流. 物理学报, 2008, 57(12): 7783-7788. doi: 10.7498/aps.57.7783
    [19] 王 博, 赵有文, 董志远, 邓爱红, 苗杉杉, 杨 俊. 高温退火后非掺杂磷化铟材料的电子辐照缺陷. 物理学报, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [20] 夏志林, 邵建达, 范正修. 薄膜体内缺陷对损伤概率的影响. 物理学报, 2007, 56(1): 400-406. doi: 10.7498/aps.56.400
计量
  • 文章访问数:  5470
  • PDF下载量:  269
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-01
  • 修回日期:  2015-12-27
  • 刊出日期:  2016-04-05

/

返回文章
返回