搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑自适应巡航车辆影响的上匝道系统混合交通流模型

华雪东 王炜 王昊

引用本文:
Citation:

考虑自适应巡航车辆影响的上匝道系统混合交通流模型

华雪东, 王炜, 王昊

A hybrid traffic flow model with considering the influence of adaptive cruise control vehicles and on-ramps

Hua Xue-Dong, Wang Wei, Wang Hao
PDF
导出引用
  • 在考虑自适应巡航(adaptive cruise control, ACC)车辆的交通流模型的基础上, 建立了考虑ACC车辆影响的上匝道系统混合交通流模型, 研究ACC车辆引入对上匝道交通系统交通流的影响. 为了描述ACC车辆和手动驾驶车辆在交通流运行中的差异, 分别构建了基于常车头时距原则的ACC 车辆跟驰子模型和手动驾驶车辆MCD元胞自动机子模型; 基于上匝道车辆合流驶入主线的需求, 建立了换道子模型, 引入了表征驾驶员换道心理的参数. 通过对混合交通流模型进行数值模拟发现, ACC车辆的混入可以有效改善上匝道系统交通流的运行, 降低合流等事件对于交通流运行的影响, 抑制交通拥堵的时空范围及拥堵强度, 提高交通流的平均速度和流量. 此外在混合交通流模型中, ACC车辆期望车头时距Hd的减小与换道心理参数 的增大均可以提高混合交通流运行的速度和流量, 而合流区长度lw对混合交通流影响则因上匝道车辆驶入概率的不同而存在差异.
    Recently, autonomous vehicles and the relevant studies have attracted much attention. Adaptive cruise control (ACC), which is a kind of cruise control system for vehicles, automatically adjusts the vehicle speed to maintain a safe distance from vehicles ahead. Since the vehicle with ACC (called ACC vehicles) is semi-autonomous, the performance of ACC vehicle must be quite different from that of manual vehicle. The characteristics of traffic flow with ACC vehicles should be carefully investigated, especially when the traffic system is a bit complicated, such as on-ramp system. The primary objective of this paper is to propose a traffic flow model to simulate the traffic flow with considering the influence of ACC vehicles and on-ramps. Based on the model proposed by Yuan in 2009 [Yuan Y M 2009 Ph. D. Dissertation (Hefei: University of Science and Technology of China)], a hybrid traffic flow model with considering the influence of ACC vehicles and on-ramps is developed. Considering the differences between ACC and manual vehicles, a car-following sub-model based on constant time headway principle is developed for ACC vehicles, while an MCD cellular automata sub-model is proposed for manual vehicles. Besides, a new parameter, , is introduced to show different psychologies of drivers when changing lane from on-ramp to main road. The lane-changing model for vehicles on-ramp is developed as well. At the end, numerical simulation is demonstrated to study the influence of ACC vehicles on traffic flow at on-ramp, and to reveal the influence of parameters on the proposed hybrid model (i.e., the length of merge area, the desired time headway of ACC vehicle and ) on model performance. The results of this paper are as follows. 1) When the ACC vehicles exist in a traffic system, the performance of traffic flow in a on-ramp area is improved: the influence of merged vehicles on main road is reduced, and the average speed and volume are increased. 2) The increase of ACC vehicles can help to alleviate traffic congestion in both congestion duration and scope aspects. 3) The newly proposed hybrid model is sensitive to the length of merge area lw, the desired time headway of ACC vehicle Hd and lane-changing psychology parameter : the decrease of Hd and the increase of can both improve the average speed and volume of traffic flow. In addition, when the volume of on-ramp is small, the speed and volume of main road can be improved by enlarging lw. When the volume of on-ramp is large, a small lw will be better for traffic flow.
      通信作者: 王炜, wangwei@seu.edu.cn
    • 基金项目: 国家重点基础研究发展计划 (批准号: 2012CB725402)、国家自然科学基金重点项目(批准号: 51338003)、国家自然科学基金(批准号: 51478113)和东南大学优秀博士学位论文基金(批准号: YBJJ1345)资助的课题.
      Corresponding author: Wang Wei, wangwei@seu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB725402), the Key Program of the National Natural Science Foundation of China (Grant No. 51338003), the National Natural Science Foundation of China (Grant No. 51478113), and the Scientific Research Foundation of Graduate School of Southeast University, China (Grant No. YBJJ1345).
    [1]

    Hua X D, Wang W, Wang H 2011 Acta Phys. Sin. 60 084502 (in Chinese) [华雪东, 王炜, 王昊 2011 物理学报 60 084502]

    [2]

    Yuan Y M 2009 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [袁耀明 2009 博士学位论文 (合肥: 中国科学技术大学)]

    [3]

    Lighthill M J, Whitham G B 1955 Proc. Roy. Soc. Ser. A 22 317

    [4]

    Richards P I 1956 Oper. Res. 4 42

    [5]

    Pipes L A 1969 Transp. Res. 3 229

    [6]

    Payne H J 1971 Math. Meth. Pub. Sys. 28 51

    [7]

    Kuhne R D 1984 Proceeding 9th International Symposium on Transportation and Traffic Theory Delft, Netherlands, July 11-13, 1984 p21

    [8]

    Jiang R, Wu Q S, Zhu Z J 2002 Transp. Res. B 36 405

    [9]

    Xue Y, Dai S Q 2003 Phys. Rev. E 68 066123

    [10]

    Tang T Q, Caccetta L, Wu Y H, Huang H J, Yang X B 2014 J. Adv. Transport. 48 304

    [11]

    Tang T Q, Shi W F, Yang X B, Wang Y P, Lu G Q 2013 Physica A 392 6300

    [12]

    Peng G H, Song W, Peng Y J, Wang S H 2014 Physica A 398 76

    [13]

    Redhu P, Gupta A K 2015 Physica A 421 249

    [14]

    Gupta A K, Sharma S 2010 Chin. Phys. B 19 110503

    [15]

    Gupta A K, Sharma S 2012 Chin. Phys. B 21 015201

    [16]

    Peng G H, Cai X H, Cao B F, Liu C Q 2012 Physica A 391 656

    [17]

    Treiber M, Henneeke A, Helbing D 1999 Phys. Rev. E 59 239

    [18]

    Herbing D, Treiber M 1998 Granular Matter 1 21

    [19]

    Herbing D 1996 Physica A 233 253

    [20]

    Herbing D 1996 Phys. Rev. E 53 2366

    [21]

    Li L, Shi P F 2005 Chin. Phys. 14 576

    [22]

    Tang T Q, He J, Yang S C, Shang H Y 2014 Physica A 413 583

    [23]

    Zeng Y Z, Zhang N, Liu L J 2014 Acta Phys. Sin. 63 068901 (in Chinese) [曾友志, 张宁, 刘利娟 2014 物理学报 63 068901]

    [24]

    Ge H X, Meng X P, Zhu H B, Li Z P 2014 Physica A 408 28

    [25]

    Koutsopoulos H N, Farah H 2012 Trans. Res. B 46 563

    [26]

    Ge H X, Yu J, Lo S M 2012 Chin. Phys. Lett. 29 50502

    [27]

    Ge H X 2011 Chin. Phys. B 20 090502

    [28]

    Zhou T, Sun L H, Zhao M, Li H M 2013 Chin. Phys. B 22 090205

    [29]

    Punzo V, Ciuffo B, Montanino M 2012 Transp. Res. Rec. 2315 11

    [30]

    Lakouari N, Bentaleb K, Ez-Zahraouy H, Benyoussef A 2015 Physica A 439 132

    [31]

    Yang D, Qiu X P, Yu D, Sun R X, Pu Y 2015 Physica A 424 62

    [32]

    Jing M, Deng W, Wang H, Ji Y J 2012 Acta Phys. Sin. 61 244502 (in Chinese) [敬明, 邓卫, 王昊, 季彦婕 2012 物理学报 61 244502]

    [33]

    Lrraga M E, Alvarez-Icaza L 2014 Chin. Phys. B 23 050701

    [34]

    Qian Y S, Shi P J, Zeng Q, Ma C X, Lin F, Sun P 2010 Chin. Phys. B 19 048201

    [35]

    Ez-Zahraouyt H, Jetto K, Benyoussef A 2006 Chin. J. Phys. 44 486

    [36]

    Siebert F W, Oehl M, Pfister H R 2014 Trans. Res. F 25 65

    [37]

    Zhao D B, Hu Z H, Xia Z P, Alippi C, Zhu Y H, Wang D 2014 Neurocomputing 125 57

    [38]

    Bishop R 2005 Intelligent Vehicle Technology and Trends (Boston: Artech House) pp127-134

    [39]

    Mark V, Schleicher S, Gelau C 2011 Accident Anal. Prev. 43 1134

    [40]

    Bato J 2011 Ph. D. Dissertation (Seattle: University of Washington)

    [41]

    Orosz G, Moehlis J, Bullo F 2010 Phys. Rev. E 81 025204

    [42]

    Xiao L Y, Gao F 2011 IEEE Trans. Intell. Transp. 12 1184

    [43]

    Davis L C 2012 Phys. Lett. A 376 2658

    [44]

    Werf J V, Shladover S, Miller M, Kourjanskaia N 2002 Transp. Res. Rec. 1800 78

    [45]

    Yuan Y M, Jiang R, Hu M B, Wu Q S, Wang R 2009 Physica A 388 2483

    [46]

    Davis L C 2004 Phys. Rev. E 69 066110

    [47]

    Kesting A, Treiber M, Schonhof M, Helbing D 2008 Transp. Res. C 16 668

    [48]

    Jiang R, Hu M B, Jia B, Wang R, Wu Q S 2007 Eur. Phys. J. B 58 197

    [49]

    Jiang R, Wu Q S 2006 Phys. Lett. A 359 99

    [50]

    Jiang R, Wu Q S 2005 Eur. Phys. J. B 46 581

  • [1]

    Hua X D, Wang W, Wang H 2011 Acta Phys. Sin. 60 084502 (in Chinese) [华雪东, 王炜, 王昊 2011 物理学报 60 084502]

    [2]

    Yuan Y M 2009 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [袁耀明 2009 博士学位论文 (合肥: 中国科学技术大学)]

    [3]

    Lighthill M J, Whitham G B 1955 Proc. Roy. Soc. Ser. A 22 317

    [4]

    Richards P I 1956 Oper. Res. 4 42

    [5]

    Pipes L A 1969 Transp. Res. 3 229

    [6]

    Payne H J 1971 Math. Meth. Pub. Sys. 28 51

    [7]

    Kuhne R D 1984 Proceeding 9th International Symposium on Transportation and Traffic Theory Delft, Netherlands, July 11-13, 1984 p21

    [8]

    Jiang R, Wu Q S, Zhu Z J 2002 Transp. Res. B 36 405

    [9]

    Xue Y, Dai S Q 2003 Phys. Rev. E 68 066123

    [10]

    Tang T Q, Caccetta L, Wu Y H, Huang H J, Yang X B 2014 J. Adv. Transport. 48 304

    [11]

    Tang T Q, Shi W F, Yang X B, Wang Y P, Lu G Q 2013 Physica A 392 6300

    [12]

    Peng G H, Song W, Peng Y J, Wang S H 2014 Physica A 398 76

    [13]

    Redhu P, Gupta A K 2015 Physica A 421 249

    [14]

    Gupta A K, Sharma S 2010 Chin. Phys. B 19 110503

    [15]

    Gupta A K, Sharma S 2012 Chin. Phys. B 21 015201

    [16]

    Peng G H, Cai X H, Cao B F, Liu C Q 2012 Physica A 391 656

    [17]

    Treiber M, Henneeke A, Helbing D 1999 Phys. Rev. E 59 239

    [18]

    Herbing D, Treiber M 1998 Granular Matter 1 21

    [19]

    Herbing D 1996 Physica A 233 253

    [20]

    Herbing D 1996 Phys. Rev. E 53 2366

    [21]

    Li L, Shi P F 2005 Chin. Phys. 14 576

    [22]

    Tang T Q, He J, Yang S C, Shang H Y 2014 Physica A 413 583

    [23]

    Zeng Y Z, Zhang N, Liu L J 2014 Acta Phys. Sin. 63 068901 (in Chinese) [曾友志, 张宁, 刘利娟 2014 物理学报 63 068901]

    [24]

    Ge H X, Meng X P, Zhu H B, Li Z P 2014 Physica A 408 28

    [25]

    Koutsopoulos H N, Farah H 2012 Trans. Res. B 46 563

    [26]

    Ge H X, Yu J, Lo S M 2012 Chin. Phys. Lett. 29 50502

    [27]

    Ge H X 2011 Chin. Phys. B 20 090502

    [28]

    Zhou T, Sun L H, Zhao M, Li H M 2013 Chin. Phys. B 22 090205

    [29]

    Punzo V, Ciuffo B, Montanino M 2012 Transp. Res. Rec. 2315 11

    [30]

    Lakouari N, Bentaleb K, Ez-Zahraouy H, Benyoussef A 2015 Physica A 439 132

    [31]

    Yang D, Qiu X P, Yu D, Sun R X, Pu Y 2015 Physica A 424 62

    [32]

    Jing M, Deng W, Wang H, Ji Y J 2012 Acta Phys. Sin. 61 244502 (in Chinese) [敬明, 邓卫, 王昊, 季彦婕 2012 物理学报 61 244502]

    [33]

    Lrraga M E, Alvarez-Icaza L 2014 Chin. Phys. B 23 050701

    [34]

    Qian Y S, Shi P J, Zeng Q, Ma C X, Lin F, Sun P 2010 Chin. Phys. B 19 048201

    [35]

    Ez-Zahraouyt H, Jetto K, Benyoussef A 2006 Chin. J. Phys. 44 486

    [36]

    Siebert F W, Oehl M, Pfister H R 2014 Trans. Res. F 25 65

    [37]

    Zhao D B, Hu Z H, Xia Z P, Alippi C, Zhu Y H, Wang D 2014 Neurocomputing 125 57

    [38]

    Bishop R 2005 Intelligent Vehicle Technology and Trends (Boston: Artech House) pp127-134

    [39]

    Mark V, Schleicher S, Gelau C 2011 Accident Anal. Prev. 43 1134

    [40]

    Bato J 2011 Ph. D. Dissertation (Seattle: University of Washington)

    [41]

    Orosz G, Moehlis J, Bullo F 2010 Phys. Rev. E 81 025204

    [42]

    Xiao L Y, Gao F 2011 IEEE Trans. Intell. Transp. 12 1184

    [43]

    Davis L C 2012 Phys. Lett. A 376 2658

    [44]

    Werf J V, Shladover S, Miller M, Kourjanskaia N 2002 Transp. Res. Rec. 1800 78

    [45]

    Yuan Y M, Jiang R, Hu M B, Wu Q S, Wang R 2009 Physica A 388 2483

    [46]

    Davis L C 2004 Phys. Rev. E 69 066110

    [47]

    Kesting A, Treiber M, Schonhof M, Helbing D 2008 Transp. Res. C 16 668

    [48]

    Jiang R, Hu M B, Jia B, Wang R, Wu Q S 2007 Eur. Phys. J. B 58 197

    [49]

    Jiang R, Wu Q S 2006 Phys. Lett. A 359 99

    [50]

    Jiang R, Wu Q S 2005 Eur. Phys. J. B 46 581

  • [1] 华雪东, 王炜, 王昊. 考虑车与车互联通讯技术的交通流跟驰模型. 物理学报, 2016, 65(1): 010502. doi: 10.7498/aps.65.010502
    [2] 张柠溪, 祝会兵, 林亨, 黄梦圆. 考虑动态车间距的一维元胞自动机交通流模型. 物理学报, 2015, 64(2): 024501. doi: 10.7498/aps.64.024501
    [3] 葛红霞, 崔煜, 程荣军. 考虑前后车效应的反馈控制跟驰模型. 物理学报, 2014, 63(11): 110504. doi: 10.7498/aps.63.110504
    [4] 叶晶晶, 李克平, 金新民. 基于跟驰模型列车运行优化控制模拟研究. 物理学报, 2014, 63(7): 070202. doi: 10.7498/aps.63.070202
    [5] 曾友志, 张宁, 刘利娟. 考虑司机扰动风险偏好异质的跟驰模型. 物理学报, 2014, 63(6): 068901. doi: 10.7498/aps.63.068901
    [6] 张晶晶, 庞明宝, 任沙沙. 基于元胞自动机模型的高速公路可变速度限制交通流特性分析. 物理学报, 2012, 61(24): 244503. doi: 10.7498/aps.61.244503
    [7] 袁娜, 化存才. 多前车速度差的车辆跟驰模型的稳定性与孤波. 物理学报, 2012, 61(16): 160509. doi: 10.7498/aps.61.160509
    [8] 贾宁, 马寿峰. 最优速度模型与元胞自动机模型的比较研究. 物理学报, 2010, 59(2): 832-841. doi: 10.7498/aps.59.832
    [9] 丁建勋, 黄海军, 唐铁桥. 一种考虑速度随机慢化概率动态演化的交通流元胞自动机模型. 物理学报, 2009, 58(11): 7591-7595. doi: 10.7498/aps.58.7591
    [10] 钱勇生, 汪海龙, 王春雷. 考虑公交港湾式停靠的多速混合城市交通流元胞自动机模型研究. 物理学报, 2008, 57(4): 2115-2121. doi: 10.7498/aps.57.2115
    [11] 雷 丽, 董力耘, 葛红霞. 基于元胞自动机模型的上匝道合流处交替通行控制的研究. 物理学报, 2007, 56(12): 6874-6880. doi: 10.7498/aps.56.6874
    [12] 陈 漩, 高自友, 赵小梅, 贾 斌. 反馈控制双车道跟驰模型研究. 物理学报, 2007, 56(4): 2024-2029. doi: 10.7498/aps.56.2024
    [13] 雷 丽, 董力耘, 宋 涛, 戴世强. 基于元胞自动机模型的高架路交织区交通流的研究. 物理学报, 2006, 55(4): 1711-1717. doi: 10.7498/aps.55.1711
    [14] 吴可非, 孔令江, 刘慕仁. 双车道元胞自动机NS和WWH交通流混合模型的研究. 物理学报, 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [15] 葛红霞, 祝会兵, 戴世强. 智能交通系统的元胞自动机交通流模型. 物理学报, 2005, 54(10): 4621-4626. doi: 10.7498/aps.54.4621
    [16] 邝 华, 孔令江, 刘慕仁. 考虑延迟概率因素对混合车辆敏感驾驶交通流模型的研究. 物理学报, 2004, 53(12): 4138-4144. doi: 10.7498/aps.53.4138
    [17] 邝 华, 孔令江, 刘慕仁. 多速混合车辆单车道元胞自动机交通流模型的研究. 物理学报, 2004, 53(9): 2894-2898. doi: 10.7498/aps.53.2894
    [18] 薛 郁. 随机计及相对速度的交通流跟驰模型. 物理学报, 2003, 52(11): 2750-2756. doi: 10.7498/aps.52.2750
    [19] 雷 丽, 薛 郁, 戴世强. 交通流的一维元胞自动机敏感驾驶模型. 物理学报, 2003, 52(9): 2121-2126. doi: 10.7498/aps.52.2121
    [20] 汪秉宏, 王 雷, 许伯铭, 胡斑比. 高速车随机延迟逐步加速交通流元胞自动机模型. 物理学报, 2000, 49(10): 1926-1932. doi: 10.7498/aps.49.1926
计量
  • 文章访问数:  6224
  • PDF下载量:  411
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-27
  • 修回日期:  2016-01-10
  • 刊出日期:  2016-04-05

/

返回文章
返回