搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溅射Al对AlN的润湿与钎焊

赵博文 尚海龙 陈凡 石恺成 李荣斌 李戈扬

引用本文:
Citation:

溅射Al对AlN的润湿与钎焊

赵博文, 尚海龙, 陈凡, 石恺成, 李荣斌, 李戈扬

Wetting and brazing of AlN by sputtered Al

Zhao Bo-Wen, Shang Hai-Long, Chen Fan, Shi Kai-Cheng, Li Rong-Bin, Li Ge-Yang
PDF
导出引用
  • 由于润湿性不佳, 难以实现金属钎料对陶瓷的无过渡层直接钎焊, 本文在研究了溅射Al薄膜对AlN的润湿作用的基础上, 通过磁控溅射的方法在AlN表面沉积Al基薄膜作为钎料, 在真空条件下对AlN陶瓷进行了直接钎焊. 采用高景深光学显微镜、扫描电子显微镜和X射线能量分散谱表征了钎焊接头和剪切断口的组织及形貌. 结果表明, 高能量溅射Al粒子对AlN的撞击可以形成只有850 ℃以上高温才可获得的Al-N化学键, 实现Al对AlN的润湿, 使Al基薄膜钎料能够在较低的温度( 510 ℃)对AlN直接钎焊. 此方法获得的Al/AlN接头的剪切强度达到104 MPa, 含3.8 at.% Cu的Al合金钎料接头强度可进一步提高到165 MPa, 它们的剪切断裂都产生于钎缝金属之中; 增加钎料中的Cu含量至9.1 at.%后, Cu在钎缝与陶瓷界面的偏聚使接头的剪切强度降低为95 MPa. Al-20 at.% Ge合金可以将钎焊温度降低至510 ℃, 但Ge在钎缝与陶瓷界面的偏聚使接头在48 MPa发生断裂.
    The wettabilities of molten metals on ceramics are poor normally. In order to improve the wettability, all existing ceramic brazing methods introduce a compound transition layer that is formed by the reaction of active metal and ceramic. The transition layer between brazing seam and ceramic however creates negative effect on the properties of brazing joints. This paper reports our study of the wetting effect of sputtered Al particles on AlN, which enables the direct brazing of AlN using deposited Al-based films as fillers, thereby eliminating the need of a transition layer. The results show that under the bombardment of energetic sputtered Al particles, Al-N chemical bonding is formed at the interface between Al film and AlN, which typically requires temperatures above 850 ℃, much higher than the melting point of Al. The bonding remained intact even after the Al film has been melted, achieving the wetting effect on AlN. As a result, the direct brazing of AlN without the need of a transition layer becomes feasible. The shear strength of Al/AlN joint using this process reaches 104 MPa. The addition of 3.8 at.% Cu to film fillers increases the shear strength to 165 MPa. The fracture is generated in metallic brazing seam in both cases. When Cu content increases to 9.1 at.%, the segregation of Cu at the interface between the brazing seam and the ceramic reduces the shear strength of the joint to 95 MPa. With Al-20 at.% Ge, the brazing temperature can be lowered to 510 ℃, although the segregation of Ge at interface results in a low shear strength of 48 MPa. Instead of the traditional use of molten metals, utilization of the metallic vapor particles to bombard AlN achieves the wetting and the direct brazing of ceramics, with no negative effect of transition layers. This breakthrough method provides a brand new perspective to the technique of ceramic brazing.
      通信作者: 李戈扬, gyli@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51371118, 51401120)资助的课题.
      Corresponding author: Li Ge-Yang, gyli@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371118, 51401120).
    [1]

    Yadav D P, Kaul R, Ganesh P, Shiroman R, Sridhar R, Kukreja L M 2014 Mater. Des. 64 415

    [2]

    Souza J C M, Nascimento R M, Martinelli A E 2010 Surf. Coat. Technol. 205 787

    [3]

    Lang F, Yamaguchi H, Ohashi H, Sato H 2011 J. Electron. Mater. 40 1563

    [4]

    Wang Y, Yang Z W, Zhang L X, Wang D P, Feng J C 2015 Mater. Des. 86 328

    [5]

    Kozlova O, Braccini M, Voytovych R, Eustathopoulos N, Martinetti P, Devismes M F 2010 Acta Mater. 58 1252

    [6]

    Laik A, Mishra P, Bhanumurthy K, Kale G B, Kashyap B P 2013 Acta Mater. 61 126

    [7]

    Chen B, Xiong H P, Cheng Y Y, Mao W, Wu S B 2015 J. Mater. Sci. Technol. 31 1034

    [8]

    Dezellus O, Andrieux J, Bosselet F, Sacerdote-Peronnet M, Baffie T, Hodaj F, Eustathopoulos N, Viala J C 2008 Mater. Sci. Eng. A 495 254

    [9]

    Olesińska W, Kaliński D, Chmielewski M, Diduszko R, Włosiński W K 2006 J. Mater. Sci.: Mater. Electron. 17 781

    [10]

    Jarrige J, Joyeux T, Lecompte J P, Labb J C 2007 J. Eur. Ceram. Soc. 27 855

    [11]

    Xu X R, Zhuang H R, Li W L, Jiang G J 2004 Ceram. Int. 30 661

    [12]

    Zhu S, Włosiński W 2001 J. Mater. Process. Technol. 109 277

    [13]

    Nono M C A, Barroso J J, Castro P J 2006 Mater. Sci. Eng. A 435 602

    [14]

    Seager C W, Kokini K, Trumble K, Krane M J M 2002 Scripta Mater. 46 395

    [15]

    Ho H N, Wu S T 1998 Mater. Sci. Eng. A 248 120

    [16]

    Taranets N Y, Naidich Y V 1996 Powder Metall. Met. Ceram. 35 282

    [17]

    Fujii H, Nakae H, Okada K 1993 Acta Metall. Mater. 41 2963

    [18]

    Jeurgens L P H, Sloof W G, Tichelaar F D, Mittemeijer E J 2002 J. Appl. Phys. 92 1649

    [19]

    Cai J, Ling G P, Chen C A, Zhang G K 2013 Acta Metall. Sin. 49 953 (in Chinese) [蔡俊, 凌国平, 陈长安, 张桂凯 2013 金属学报 49 953]

    [20]

    Prin G R, Baffie T, Jeymond M, Eustathopoulos N 2001 Mater. Sci. Eng. A 298 34

    [21]

    Sobczak N, Ksiazek M, Radziwill W, Stobierski L, Mikulowski B 2001 Trans. JWRI 30 125

    [22]

    Kida M, Bahraini M, Molina J M, Weber L, Mortensen A 2008 Mater. Sci. Eng. A 495 197

    [23]

    Zhang Q, ağın T, van Duin A, William A G, Qi Y, Hector L G 2004 Phys. Rev. B 69 045423

  • [1]

    Yadav D P, Kaul R, Ganesh P, Shiroman R, Sridhar R, Kukreja L M 2014 Mater. Des. 64 415

    [2]

    Souza J C M, Nascimento R M, Martinelli A E 2010 Surf. Coat. Technol. 205 787

    [3]

    Lang F, Yamaguchi H, Ohashi H, Sato H 2011 J. Electron. Mater. 40 1563

    [4]

    Wang Y, Yang Z W, Zhang L X, Wang D P, Feng J C 2015 Mater. Des. 86 328

    [5]

    Kozlova O, Braccini M, Voytovych R, Eustathopoulos N, Martinetti P, Devismes M F 2010 Acta Mater. 58 1252

    [6]

    Laik A, Mishra P, Bhanumurthy K, Kale G B, Kashyap B P 2013 Acta Mater. 61 126

    [7]

    Chen B, Xiong H P, Cheng Y Y, Mao W, Wu S B 2015 J. Mater. Sci. Technol. 31 1034

    [8]

    Dezellus O, Andrieux J, Bosselet F, Sacerdote-Peronnet M, Baffie T, Hodaj F, Eustathopoulos N, Viala J C 2008 Mater. Sci. Eng. A 495 254

    [9]

    Olesińska W, Kaliński D, Chmielewski M, Diduszko R, Włosiński W K 2006 J. Mater. Sci.: Mater. Electron. 17 781

    [10]

    Jarrige J, Joyeux T, Lecompte J P, Labb J C 2007 J. Eur. Ceram. Soc. 27 855

    [11]

    Xu X R, Zhuang H R, Li W L, Jiang G J 2004 Ceram. Int. 30 661

    [12]

    Zhu S, Włosiński W 2001 J. Mater. Process. Technol. 109 277

    [13]

    Nono M C A, Barroso J J, Castro P J 2006 Mater. Sci. Eng. A 435 602

    [14]

    Seager C W, Kokini K, Trumble K, Krane M J M 2002 Scripta Mater. 46 395

    [15]

    Ho H N, Wu S T 1998 Mater. Sci. Eng. A 248 120

    [16]

    Taranets N Y, Naidich Y V 1996 Powder Metall. Met. Ceram. 35 282

    [17]

    Fujii H, Nakae H, Okada K 1993 Acta Metall. Mater. 41 2963

    [18]

    Jeurgens L P H, Sloof W G, Tichelaar F D, Mittemeijer E J 2002 J. Appl. Phys. 92 1649

    [19]

    Cai J, Ling G P, Chen C A, Zhang G K 2013 Acta Metall. Sin. 49 953 (in Chinese) [蔡俊, 凌国平, 陈长安, 张桂凯 2013 金属学报 49 953]

    [20]

    Prin G R, Baffie T, Jeymond M, Eustathopoulos N 2001 Mater. Sci. Eng. A 298 34

    [21]

    Sobczak N, Ksiazek M, Radziwill W, Stobierski L, Mikulowski B 2001 Trans. JWRI 30 125

    [22]

    Kida M, Bahraini M, Molina J M, Weber L, Mortensen A 2008 Mater. Sci. Eng. A 495 197

    [23]

    Zhang Q, ağın T, van Duin A, William A G, Qi Y, Hector L G 2004 Phys. Rev. B 69 045423

  • [1] 刘乔, 黄家宸, 王昊, 邓亚骏. 前进接触线薄液膜结构与运移机制. 物理学报, 2024, 73(1): 016801. doi: 10.7498/aps.73.20231296
    [2] 李玲, 潘天择, 马家骏, 张善涛, 汪尧进. PNZST:AlN复合陶瓷局域应力场增强热释电性能机理. 物理学报, 2022, 71(21): 217701. doi: 10.7498/aps.71.20221250
    [3] 叶学民, 张湘珊, 李明兰, 李春曦. 自润湿流体液滴的热毛细迁移特性. 物理学报, 2018, 67(18): 184704. doi: 10.7498/aps.67.20180660
    [4] 程广贵, 张忠强, 丁建宁, 袁宁一, 许多. 石墨表面熔融硅的润湿行为研究. 物理学报, 2017, 66(3): 036801. doi: 10.7498/aps.66.036801
    [5] 胡海豹, 王德政, 鲍路瑶, 文俊, 张招柱. 基于润湿阶跃的水下大尺度气膜封存方法. 物理学报, 2016, 65(13): 134701. doi: 10.7498/aps.65.134701
    [6] 徐威, 兰忠, 彭本利, 温荣福, 马学虎. 微液滴在不同能量表面上润湿状态的分子动力学模拟. 物理学报, 2015, 64(21): 216801. doi: 10.7498/aps.64.216801
    [7] 刘天庆, 孙玮, 李香琴, 孙相彧, 艾宏儒. 纳米结构表面上部分润湿液滴合并诱导弹跳的理论研究. 物理学报, 2014, 63(8): 086801. doi: 10.7498/aps.63.086801
    [8] 梁刚涛, 郭亚丽, 沈胜强. 液滴低速撞击润湿球面现象观测分析. 物理学报, 2013, 62(18): 184703. doi: 10.7498/aps.62.184703
    [9] 蓝雷雷, 胡新宇, 顾广瑞, 姜丽娜, 吴宝嘉. FeMn掺杂AlN薄膜的制备及其特性研究. 物理学报, 2013, 62(21): 217504. doi: 10.7498/aps.62.217504
    [10] 冯嘉恒, 唐立丹, 刘邦武, 夏洋, 王冰. 等离子增强原子层沉积低温生长AlN薄膜. 物理学报, 2013, 62(11): 117302. doi: 10.7498/aps.62.117302
    [11] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [12] 贾璐, 谢二庆, 潘孝军, 张振兴. 溅射制备非晶氮化镓薄膜的光学性能. 物理学报, 2009, 58(5): 3377-3382. doi: 10.7498/aps.58.3377
    [13] 潘孝军, 张振兴, 王 涛, 李 晖, 谢二庆. 溅射制备纳米晶GaN∶Er薄膜的室温发光特性. 物理学报, 2008, 57(6): 3786-3790. doi: 10.7498/aps.57.3786
    [14] 卢 肖, 吴传贵, 张万里, 李言荣. 射频溅射制备的BST薄膜介电击穿研究. 物理学报, 2006, 55(5): 2513-2517. doi: 10.7498/aps.55.2513
    [15] 张仁刚, 王宝义, 张 辉, 马创新, 魏 龙. 不同参数溅射的ZnO薄膜硫化后的特性. 物理学报, 2005, 54(5): 2389-2393. doi: 10.7498/aps.54.2389
    [16] 劳技军, 胡晓萍, 虞晓江, 李戈扬, 顾明元. AlN在AlN/VN纳米多层膜中的相转变及其对薄膜力学性能的影响. 物理学报, 2003, 52(9): 2259-2263. doi: 10.7498/aps.52.2259
    [17] 王佑祥, 岳瑞峰, 陈春华. Ti薄膜与AlN陶瓷的界面反应. 物理学报, 1998, 47(1): 75-82. doi: 10.7498/aps.47.75
    [18] 尤广建, 余梅, 罗惠临. 溅射氧化铁薄膜的Hall效应. 物理学报, 1988, 37(10): 1613-1618. doi: 10.7498/aps.37.1613
    [19] 余梅, 尤广建, 周增均, 罗惠临. 溅射氧化铁薄膜矫顽力的研究. 物理学报, 1987, 36(5): 562-569. doi: 10.7498/aps.36.562
    [20] 王荫君;陈书潮;郑德娟;李德忠;郭慧群;孟庆安. 溅射钆钴合金薄膜的磁性. 物理学报, 1977, 26(3): 187-192. doi: 10.7498/aps.26.187
计量
  • 文章访问数:  5052
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-03
  • 修回日期:  2016-01-28
  • 刊出日期:  2016-04-05

/

返回文章
返回