搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nd0.7Sr0.3MnO3陶瓷中界面陷阱态相关电阻转变行为

陈顺生 熊良斌 杨昌平

引用本文:
Citation:

Nd0.7Sr0.3MnO3陶瓷中界面陷阱态相关电阻转变行为

陈顺生, 熊良斌, 杨昌平

Interfacial trap dependent resistance switching effect in Nd0.7Sr0.3MnO3 ceramic

Chen Shun-Sheng, Xiong Liang-Bin, Yang Chang-Ping
PDF
导出引用
  • 通过固相烧结和高能球磨后热处理两种方法分别得到不具晶(相)界和具有明显晶(相)界的两种Nd0.7Sr0.3MnO3陶瓷样品, 并用两线法和四线法分别对这两种样品的电极-块体接触界面和晶(相)界界面的I-V和电脉冲诱导电阻转变效应(EPIR)进行研究. 结果发现, 在两线法测试下, 电极-块体界面具有回滞的非线性I-V特征, 并能产生稳定的EPIR效应, EPIR的稳定性随温度的升高逐渐减弱并消失; 而对具有明显晶(相)界的陶瓷样品, 四线法测试结果表明, 虽然其I-V行为也具有非线性和回滞性特点, 但不能产生EPIR 效应. 这些奇特的界面输运行为与界面中的各种缺陷充当陷阱并实现对载流子的捕捉和释放过程密切相关. 而大量的晶(相)界界面及其复杂的连接方式导致较大的漏导则是晶(相)界不能出现EPIR效应的主要原因.
    Switching behavior in Nd0.7Sr0.3MnO3 ceramic is investigated widely due to its close association with the new storage Resistive random access memory. In this work, we discuss the transport characteristic of the electrode-bulk interface and boundary/phase interface, and explain the differences between the two interfaces. Firstly, the Nd0.7Sr0.3MnO3 ceramic samples are prepared by solid-phase reaction and high-energy milling methods, respectively. And the transport properties of the two interfaces are investigated respectively by the two-line and four-line measurements. The results show that the Ag electrode-bulk interfaces exhibit nonlinear and hysteretic I-V characteristics and a stable resistance switching effect, and the stability of resistance switching behavior is reduced gradually with the increase of temperature. For the boundaries/phase interfaces, however, it does not exhibit resistance switching effect, although a nonlinear and hysteretic I-V behavior can also be observed under the four-line measurement mode. Various defects in the two interfaces act as traps and regulate the interfacial transports and result in the nonlinear and hysteretic I-V behaviors in the two interfaces. Additionally, the simulation experiments reveal that a large number of boundaries/phase interfaces and larger leakage conductance resulting from the complex connections of boundaries/phase interfaces are the main responsibilities for the fact that the boundaries/(phase) interfaces do not exhibit EPIR behavior as the electrode-bulk interface.
      通信作者: 杨昌平, cpyang@hubu.edu.cn
    • 基金项目: 湖北省科技厅项目(批准号: 2014CFC1090)、湖北省教育厅科技项目(批准号: B2014025) 和中国博士后科学基金(批准号: 2015M572188)资助的课题.
      Corresponding author: Yang Chang-Ping, cpyang@hubu.edu.cn
    • Funds: Project supported by the Scientific Research Foundation of the Technology Department of Hubei Province, China (Grant No. 2014CFC1090), the Scientific Research Foundation of the Education Department of Hubei Province, China (Grant No. B2014025), and the China Postdoctoral Science Foundation (Grant No. 2015M572188).
    [1]

    Gao J, Shen S Q, Li T K, Sun J R 2003 Appl. Phys. Lett. 82 4732

    [2]

    Zhao Y G, Wang Y H, Zhang G M, Zhang B, Zhang X P, Yang C X, Lang P L, Zhu M H, Guan P C 2005 Appl. Phys. Lett. 86 122502

    [3]

    Chattopadhyay S, Giri S, Majumdar S 2012 J. Appl. Phys. 112 083915

    [4]

    He L M, Ji Y, Wu H Y, Xu B, Sun Y B, Zhang X F, Lu Y, Zhao J J 2014 Chin. Phys. B 23 077601

    [5]

    Medvedeva I V, Dyachkova T V, Tyutyunnik A P, Zaynulin Y G, Marchenkov V V, Marchenkova E B, Fomina K A, Yang C P, Chen S S, Baerner K 2012 Physica B 407 153

    [6]

    Chen S S, Shi D W, Li S Z, Yang C P, Zhang Y L 2015 Bull. Mater. Sci. accepted

    [7]

    Chen S S, Shi D W, Wang H X, Yang C P, Xiao H B, Brner K, Medvedeva V 2013 Adv. Mater. Res. 873 744

    [8]

    Coey M 2005 Nature Mater. 4 9

    [9]

    Wang S P, Zhang J C, Cao G X, Yu J, Jing C, Cao S X 2006 Acta Phys. Sin. 55 367 (in Chinese) [王仕鹏, 张金仓, 曹桂新, 俞坚, 敬超, 曹世勋 2006 物理学报 55 367]

    [10]

    Chen S S, Yang C P, Deng H, Sun Z G 2008 Acta Phys. Sin. 57 3798 (in Chinese) [陈顺生, 杨昌平, 邓恒, 孙志刚 2008 物理学报 57 3798]

    [11]

    Chen S S, Yang C P, Wang H, Medvedeva I V, Brner K 2010 Mat. Sci. Eng. B 172 167

    [12]

    Liu S Q, Wu N J, Ignative A 2000 Appl. Phys. Lett. 76 2749

    [13]

    Tsui S, Baikalov A, Cmaidalka J, Sun Y Y, Wang Y Q, Xue Y Y, Chu C W, Chen L, Jacobson A J 2004 Appl. Phys. Lett. 85 317

    [14]

    Chen S S, Yang C P, Ren C L, Wang R L, Wang H, Medvedeva I V, Baerner K 2011 Bull. Mater. Sci. 34 1

    [15]

    Chen S S, Yang C P, Xu L F, Yang F J, Wang H B, Wang H, Xiong L B, Yu Y, Medvedeva I V, Barner K 2010 Solid State Commun. 150 240

    [16]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [17]

    Sawa A, Fujii T, Kawasaki M, Tokura Y 2004 Appl. Phys. Lett. 18 4073

    [18]

    Tsui S, Baikalov A, Cmaidalka J, Sun Y Y, et al. 2004 Appl. Phys. Lett. 85 317

    [19]

    Yang R, Li M X, Yu W D, Gao X D, Shang D S, Liu X J, Cao X, Wang Q, Chen L D 2009 Appl. Phys. Lett. 95 072105

    [20]

    Yan Z B, Li S Z, Wang K F, Liu J M 2010 Appl. Phys. Lett. 96 012103

    [21]

    Shang D S, Wang Q, Chen L D, Dong R, Li X M, Zhang W Q 2006 Phys. Rev. B 73 245427

    [22]

    Chen S S, Yang C P, Luo X J, Medvedeva I V 2012 Chin. Phys. Lett. 29 077303

    [23]

    Chen S S, Huang C, Wang R L, Yang C P, Medvedeva I V, Sun Z G 2011 Acta Phys. Sin. 60 0521 (in Chinese) [陈顺生, 黄昌, 王瑞龙, 杨昌平, Medvedeva I V, 孙志刚 2011 物理学报 60 0521]

    [24]

    Chen S S, Yang C P, Zhou Z H, Guo D H, Wang H, Rao G H 2007 J. Alloys Compd. 463 271

    [25]

    Chen S S, Luo X J, Shi D W, Li H, Yang C P 2013 J. Mater. Sci. Technol. 29 737

    [26]

    Odagawa A, Sato H, Inoue I H, Akoh H, Kawasaki M, Tokura Y, Kanno T, Adachi H 2004 Phys. Rev. B 70 224403

    [27]

    Boer R W I, Morpurgo A F 2005 Phys. Rev. B 72 073207

    [28]

    Shi D W, Yang C P, Wu M L, Xu L S, Ding Y M, Yang F J, Xiao H B, Wang R L, Brner K, Marchenkov V V 2015 Ceram. Int. 41 7276

    [29]

    Chen S S, Yang C P, Luo X J, Barner K, Medvedeva I V 2012 Chin. Phys. Lett. 29 027302

  • [1]

    Gao J, Shen S Q, Li T K, Sun J R 2003 Appl. Phys. Lett. 82 4732

    [2]

    Zhao Y G, Wang Y H, Zhang G M, Zhang B, Zhang X P, Yang C X, Lang P L, Zhu M H, Guan P C 2005 Appl. Phys. Lett. 86 122502

    [3]

    Chattopadhyay S, Giri S, Majumdar S 2012 J. Appl. Phys. 112 083915

    [4]

    He L M, Ji Y, Wu H Y, Xu B, Sun Y B, Zhang X F, Lu Y, Zhao J J 2014 Chin. Phys. B 23 077601

    [5]

    Medvedeva I V, Dyachkova T V, Tyutyunnik A P, Zaynulin Y G, Marchenkov V V, Marchenkova E B, Fomina K A, Yang C P, Chen S S, Baerner K 2012 Physica B 407 153

    [6]

    Chen S S, Shi D W, Li S Z, Yang C P, Zhang Y L 2015 Bull. Mater. Sci. accepted

    [7]

    Chen S S, Shi D W, Wang H X, Yang C P, Xiao H B, Brner K, Medvedeva V 2013 Adv. Mater. Res. 873 744

    [8]

    Coey M 2005 Nature Mater. 4 9

    [9]

    Wang S P, Zhang J C, Cao G X, Yu J, Jing C, Cao S X 2006 Acta Phys. Sin. 55 367 (in Chinese) [王仕鹏, 张金仓, 曹桂新, 俞坚, 敬超, 曹世勋 2006 物理学报 55 367]

    [10]

    Chen S S, Yang C P, Deng H, Sun Z G 2008 Acta Phys. Sin. 57 3798 (in Chinese) [陈顺生, 杨昌平, 邓恒, 孙志刚 2008 物理学报 57 3798]

    [11]

    Chen S S, Yang C P, Wang H, Medvedeva I V, Brner K 2010 Mat. Sci. Eng. B 172 167

    [12]

    Liu S Q, Wu N J, Ignative A 2000 Appl. Phys. Lett. 76 2749

    [13]

    Tsui S, Baikalov A, Cmaidalka J, Sun Y Y, Wang Y Q, Xue Y Y, Chu C W, Chen L, Jacobson A J 2004 Appl. Phys. Lett. 85 317

    [14]

    Chen S S, Yang C P, Ren C L, Wang R L, Wang H, Medvedeva I V, Baerner K 2011 Bull. Mater. Sci. 34 1

    [15]

    Chen S S, Yang C P, Xu L F, Yang F J, Wang H B, Wang H, Xiong L B, Yu Y, Medvedeva I V, Barner K 2010 Solid State Commun. 150 240

    [16]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [17]

    Sawa A, Fujii T, Kawasaki M, Tokura Y 2004 Appl. Phys. Lett. 18 4073

    [18]

    Tsui S, Baikalov A, Cmaidalka J, Sun Y Y, et al. 2004 Appl. Phys. Lett. 85 317

    [19]

    Yang R, Li M X, Yu W D, Gao X D, Shang D S, Liu X J, Cao X, Wang Q, Chen L D 2009 Appl. Phys. Lett. 95 072105

    [20]

    Yan Z B, Li S Z, Wang K F, Liu J M 2010 Appl. Phys. Lett. 96 012103

    [21]

    Shang D S, Wang Q, Chen L D, Dong R, Li X M, Zhang W Q 2006 Phys. Rev. B 73 245427

    [22]

    Chen S S, Yang C P, Luo X J, Medvedeva I V 2012 Chin. Phys. Lett. 29 077303

    [23]

    Chen S S, Huang C, Wang R L, Yang C P, Medvedeva I V, Sun Z G 2011 Acta Phys. Sin. 60 0521 (in Chinese) [陈顺生, 黄昌, 王瑞龙, 杨昌平, Medvedeva I V, 孙志刚 2011 物理学报 60 0521]

    [24]

    Chen S S, Yang C P, Zhou Z H, Guo D H, Wang H, Rao G H 2007 J. Alloys Compd. 463 271

    [25]

    Chen S S, Luo X J, Shi D W, Li H, Yang C P 2013 J. Mater. Sci. Technol. 29 737

    [26]

    Odagawa A, Sato H, Inoue I H, Akoh H, Kawasaki M, Tokura Y, Kanno T, Adachi H 2004 Phys. Rev. B 70 224403

    [27]

    Boer R W I, Morpurgo A F 2005 Phys. Rev. B 72 073207

    [28]

    Shi D W, Yang C P, Wu M L, Xu L S, Ding Y M, Yang F J, Xiao H B, Wang R L, Brner K, Marchenkov V V 2015 Ceram. Int. 41 7276

    [29]

    Chen S S, Yang C P, Luo X J, Barner K, Medvedeva I V 2012 Chin. Phys. Lett. 29 027302

  • [1] 张鹏, 朴红光, 张英德, 黄焦宏. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展. 物理学报, 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [2] 王建元, 白健英, 罗炳成, 王拴虎, 金克新, 陈长乐. BaTiO3/La0.67Sr0.33MnO3-复合薄膜的磁致电极化和磁介电特性研究. 物理学报, 2018, 67(1): 017701. doi: 10.7498/aps.67.20172019
    [3] 徐飘荣, 强蕾, 姚若河. 一个非晶InGaZnO薄膜晶体管线性区陷阱态的提取方法. 物理学报, 2015, 64(13): 137101. doi: 10.7498/aps.64.137101
    [4] 陈顺生, 杨昌平, 阚芝兰, Medvedeva I V, Marchenkov S. 热压处理对Nd0.7Sr0.3MnO3陶瓷磁电输运影响. 物理学报, 2012, 61(18): 186202. doi: 10.7498/aps.61.186202
    [5] 杨昌平, 李旻奕, 宋学平, 肖海波, 徐玲芳. 氧含量对CaCu3Ti4O12巨介电常数和介电过程的影响. 物理学报, 2012, 61(19): 197702. doi: 10.7498/aps.61.197702
    [6] 伊丁, 秦伟, 解士杰. 钙钛矿锰氧化物中的极化子研究. 物理学报, 2012, 61(20): 207101. doi: 10.7498/aps.61.207101
    [7] 陈顺生, 杨昌平, 肖海波, 徐玲芳, 马厂. Nd1-xSrxMnO3中掺杂浓度对电脉冲诱导电阻转变效应的影响. 物理学报, 2012, 61(14): 147301. doi: 10.7498/aps.61.147301
    [8] 岳廷, 何灏, 张星, 李广. La0.55Ca0.45MnO3的电子密度分布变温X射线衍射测量. 物理学报, 2011, 60(5): 057501. doi: 10.7498/aps.60.057501
    [9] 胡妮, 刘雍, 程莉, 石兢, 熊锐. La0.4Ca0.6MnO3系统中Mn位Fe和Cr掺杂效应的比较性研究. 物理学报, 2011, 60(1): 017503. doi: 10.7498/aps.60.017503
    [10] 解其云, 吴小山. La0.7Sr0.3-x□xCoO3(0≤x≤0.2)钴氧化物中锶空位诱导的自旋态转变效应. 物理学报, 2009, 58(2): 1229-1236. doi: 10.7498/aps.58.1229
    [11] 金克新, 赵省贵, 陈长乐. Cu掺杂La0.67Sr0.33CuxMn1-xO3薄膜的光诱导效应研究. 物理学报, 2009, 58(7): 4953-4957. doi: 10.7498/aps.58.4953
    [12] 张成国, 章晓中. La1-xCaxMnO3(x≤1/3)中Ca掺杂的团簇化及其稳定性. 物理学报, 2008, 57(11): 7126-7131. doi: 10.7498/aps.57.7126
    [13] 羊新胜, 赵 勇. 铁磁性锰氧化物掺杂的ZnO压敏电阻性能研究. 物理学报, 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [14] 谈国太, 陈正豪, 章晓中. 钙钛矿锰氧化物La1-xTexMnO3(x=0.04, 0.1)的两类磁电阻现象. 物理学报, 2005, 54(1): 379-383. doi: 10.7498/aps.54.379
    [15] 康保娟, 曹世勋, 王新燕, 李领伟, 黎文峰, 刘 芬, 曹桂新, 郁黎明, 敬 超, 张金仓. 混合场中 (Pr1-yNdy)2/3Sr1/3MnO3体系磁转变行为研究. 物理学报, 2005, 54(2): 902-906. doi: 10.7498/aps.54.902
    [16] 束正煌, 董锦明. 轨道序对半掺杂锰氧化物光学性质的影响. 物理学报, 2003, 52(11): 2918-2922. doi: 10.7498/aps.52.2918
    [17] 李宝河, 鲜于文旭, 万 欣, 张 健, 沈保根. 钙钛矿锰氧化物La0.7Sr0.3MxMn1-xO3(M=Cr,Fe)的巨磁电阻效应与磁性. 物理学报, 2000, 49(7): 1366-1370. doi: 10.7498/aps.49.1366
    [18] 杨广亮, 鲜于文旭, 千正男, 金汉民. 纳米晶类钙钛矿型锰氧化物导电性的高压研究. 物理学报, 2000, 49(3): 553-556. doi: 10.7498/aps.49.553
    [19] 王志宏, 蔡建旺, 沈保根, 赵见高, 詹文山. 自旋玻璃锰氧化物La0.67Ca0.33(Mn,Fe)O3中的分步磁化和超大磁电阻. 物理学报, 1999, 48(4): 757-762. doi: 10.7498/aps.48.757
    [20] 祝向荣, 沈鸿烈, 沈勤我, 李 铁, 邹世昌, Koichi Tsukamoto, Mamoru Okutomi, Takeshi Yanagisawa, Noboru Higuchi. 二元掺杂镧锰氧化物La-Ca-Ba-Mn-O的庞磁电阻特性. 物理学报, 1999, 48(13): 40-46. doi: 10.7498/aps.48.40
计量
  • 文章访问数:  4413
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-11
  • 修回日期:  2016-01-26
  • 刊出日期:  2016-04-05

/

返回文章
返回