搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

V掺杂ZnO透明导电薄膜研究

王延峰 孟旭东 郑伟 宋庆功 翟昌鑫 郭兵 张越 杨富 南景宇

引用本文:
Citation:

V掺杂ZnO透明导电薄膜研究

王延峰, 孟旭东, 郑伟, 宋庆功, 翟昌鑫, 郭兵, 张越, 杨富, 南景宇

Investigation of V doped ZnO transparent conductive oxide films

Wang Yan-Feng, Meng Xu-Dong, Zheng Wei, Song Qing-Gong, Zhai Chang-Xin, Guo Bing, Zhang Yue, Yang Fu, Nan Jing-Yu
PDF
导出引用
  • 本文分别采用磁控溅射技术与基于密度泛函理论的平面波赝势方法两种方式, 对高价态差元素V掺杂ZnO薄膜进行研究. 实验研究结果表明: V的掺入并未改变ZnO的生长方式, 所制备的薄膜都呈(002)择优生长; 随着衬底温度增加, VZO薄膜的结晶质量逐步改善, 当衬底温度超过280 ℃时薄膜的结晶质量恶化; 在280 ℃时获得的VZO薄膜电阻率最低3.810-3 m, 500-2000 nm平均透过率高于85%. 理论模拟结果表明: V以替位形式掺入ZnO六角纤锌矿晶格结构中, 费米能级进入导带, 材料表现出n 型半导体的特性, 导电电子主要由V 3d及O 2p电子轨道提供. 理论计算结果与实验结果的一致性, 表明VZO薄膜具有作为高效Si基薄膜太阳电池透明导电薄膜的应用潜力.
    The performance of the ZnO film that is an indispensable part of pin-type Si-based thin-film solar cells, plays a crucial role in high-efficiency thin-film solar cells and also forms a significant part in photovoltaic research and development. In this paper, low resistivity and wide broadband spectrum transmittance vanadium (V) doped ZnO (VZO) films are successfully fabricated on Corning XG substrates at various substrate temperatures (STs). The properties of VZO films are investigated by the radio-frequency magnetron sputtering technique and plane wave pseudo-potential method based on the density-functional theory. The experimental results demonstrate that all the VZO flms have (002) preferred orientation with the c-axis perpendicular to the substrate, and the crystalline quality is found to increase with the substrate temperature (ST) rising up to 280 ℃ and decrease when the ST increases further. The optimal VZO film is achieved at 280 ℃ with a resistivity of 3.810-3 cm and an average transmittance of more than 85% in a range of 500-2000 nm. The theoretical result shows that after incorporation of V the Fermi level goes through the conduction band, showing a typical n-type metallic characteristic. The carriers originate from the orbits of V 3d and O 2p. The calculated lattice constants and mobility for VZO film are in agreement well with the experimental results. The consistency of the theoretical results with the experimental results shows that the VZO thin film has a great potential application as a front contact in high-efficiency thin film solar cells.
      通信作者: 南景宇, njy1961@163.com
    • 基金项目: 国家自然科学基金青年科学基金 (批准号: 11404088)、河北省自然科学基金 (批准号: F2015405011)、河北省普通高等学校青年拔尖人才项目 (批准号: BJ2014003)、河北省科技攻关项目 (批准号: 11215168)、河北北方学院重大项目(批准号: ZD201401)、河北北方学院博士基金项目、河北北方学院青年项目 (批准号: Q2014001)、河北省教育厅青年基金项目 (批准号: QN2015148) 和张家口市科学技术研究与发展计划自筹经费项目 (批准号: 20131017B) 资助的课题.
      Corresponding author: Nan Jing-Yu, njy1961@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11404088), the Natural Science Foundation of Hebei Province, China (Grant No. F2015405011), the Ordinary University Youth Talent Project of Hebei Province, China (Grant No. BJ2014003), the Science and Technology Support Program of Hebei Province, China (Grant No. 11215168), the Major Projects of Hebei North University, China (Grant No. ZD201401), the Doctoral Scientific Research Foundation of Hebei North University, China, the Youth Fund of Hebei North University, China (Grant No. Q2014001), the Project of the Department of Education of Hebei Province, China (Grant No. QN2015148), and the Science and Technology Research and Development Program Self-Funded Project of Zhangjiakou City of 2013, China (Grant No. 20131017B).
    [1]

    Minami T 2005 Semicond. Sci. Technol. 20 S35

    [2]

    Ding L, Fanni L, Messerschmidt D, Zabihzadeh S, Morales M M, Nicolay S, Ballif C 2014 Sol. Energy Mater. Sol. Cells 128 378

    [3]

    Meier M, Paetzold U W, Prmpers M, Merdzhanova T, Carius R, Gordijn A 2014 Prog. Photovolt: Res. Appl. 22 1226

    [4]

    Sang B S, Kushiya K, Okumura D, Yamase O 2001 Sol. Energy Mater. Sol. Cells 67 237

    [5]

    Park H K, Heo J 2014 Appl. Surf. Sci. 309 133

    [6]

    Park S M, Ikegami T, Ebihara K 2006 Thin Solid Films 513 90

    [7]

    Huang Q, Zhang D K, Liu B F, Bai L S, Ni J, Zhao Y, Zhang X D 2015 Sol. Energy Mater. Sol. Cells 136 11

    [8]

    Agashe C, Kluth O, Schpe G, Siekmann H, Hpkes J, Rech B 2003 Thin Solid Films 442 167

    [9]

    Ma Q B, Ye Z Z, He H P, Luo Y, Zhu L P, Huang J Y, Zhang Y Z, Zhao B H 2008 Chem. Phys. Chem. 9 529

    [10]

    Meng Y, Yang X L, Chen H X, Shen J, Jiang Y M, Zhang Z J, Hua Z Y 2001 Thin Solid Films 394 219

    [11]

    Gupta R K, Ghosh K, Mishra S R, Kahol P K 2008 Appl. Surf. Sci. 254 1661

    [12]

    Zhang C, Chen X L, Wang F, Yan C B, Huang Q, Zhao Y, Zhang X D, Geng X H 2012 Acta Phys. Sin. 61 238101 (in Chinese) [张翅, 陈新亮, 王斐, 闫聪博, 黄茜, 赵颖, 张晓丹, 耿新华 2012 物理学报 61 238101]

    [13]

    Wu M Y, Yu S H, Chen G H, He L, Yang L, Zhang W F 2015 Appl. Surf. Sci. 324 791

    [14]

    Cao F, Wand Y D, Liu D L, Yin J Z, Guo B J, Li L, An Y P 2009 Chin. Phys. Lett. 26 034210

    [15]

    Qadri S B, Kim H, Horwitz J S, Chrisey D B 2000 J. Appl. Phys. 88 6564

    [16]

    Ngoma B D, Mpahane T, Manyala N, Nemraoui O, Buttner U, Kana J B, Fasasi A Y, Maaza M, Bey A C 2009 Appl. Surf. Sci. 255 4153

    [17]

    Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M, Guo W R 2014 Chin. Phys. B 23 047805

    [18]

    Schlenker E, Bakina A, Postelsa B, Mofor A C, Kreyea M, Ronning C, Sievers S, Albrecht M, Siegner U, Kling R, Waag A 2007 Superlattices Microstruct. 42 236

    [19]

    Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801 (in Chinese) [王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹 2012 物理学报 61 137801]

    [20]

    Wang Y F, Zhang X D, Huang Q, Yang F, Meng X D, Song Q G, Zhao Y 2013 Acta Phys. Sin. 62 247802 (in Chinese) [王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖 2013 物理学报 62 247802]

    [21]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [24]

    Wang Q B, Zhou C, Wu J, L T 2013 Opt. Commun. 297 79

    [25]

    Sheetz R M, Ponomareva I, Richter E, Andriotis A N, Menon M 2009 Phys. Rev. B 80 195314

    [26]

    Wang Y F, Zhang X D, Huang Q, Yang F, Liang J H, Zhang D K, Zhao Y 2014 Vacuum 107 6

    [27]

    zgr , Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, Morko H 2005 J. Appl. Phys. 98 041301

    [28]

    Ellmer K 2000 J. Phys. D: Appl. Phys. 33 R17

    [29]

    Singh S, Srinivasa R S, Major S S 2007 Thin Solid Films 515 8718

    [30]

    Li X Y, Li H J, Wang Z J, Xia H, Xiong Z Y, Wang J X, Yang B C 2009 Opt. Commun. 282 247

    [31]

    Miyata T, Suzuki S, Ishii M, Minami T 2002 Thin Solid Films 411 76

    [32]

    Pei Z L, Sun C, Tan M H, Xiao J Q, Guan D H, Huang R F, Wen L S 2001 J. Appl. Phys. 90 3432

    [33]

    Desgreniers S 1998 Phys. Rev. B: Condens. Matter 58 14102

    [34]

    Wang Y F, Huang H Y, Meng X D, Yang F, Nan J Y, Song Q G, Huang Q, Zhao Y, Zhang X D 2015 J. Alloys Compd. 636 102

    [35]

    Burstein E 1954 Phys. Rev. 93 632

    [36]

    Moss T S 1954 Proc. Phys. Soc. London, Sect. B 67 775

    [37]

    Yang P, Gao X H 1981 Journal of Shanxi University (Natural Science Edition) 4 40 (in Chinese) [杨频, 高孝恢 1981 山西大学学报(自然科学版) 4 40]

  • [1]

    Minami T 2005 Semicond. Sci. Technol. 20 S35

    [2]

    Ding L, Fanni L, Messerschmidt D, Zabihzadeh S, Morales M M, Nicolay S, Ballif C 2014 Sol. Energy Mater. Sol. Cells 128 378

    [3]

    Meier M, Paetzold U W, Prmpers M, Merdzhanova T, Carius R, Gordijn A 2014 Prog. Photovolt: Res. Appl. 22 1226

    [4]

    Sang B S, Kushiya K, Okumura D, Yamase O 2001 Sol. Energy Mater. Sol. Cells 67 237

    [5]

    Park H K, Heo J 2014 Appl. Surf. Sci. 309 133

    [6]

    Park S M, Ikegami T, Ebihara K 2006 Thin Solid Films 513 90

    [7]

    Huang Q, Zhang D K, Liu B F, Bai L S, Ni J, Zhao Y, Zhang X D 2015 Sol. Energy Mater. Sol. Cells 136 11

    [8]

    Agashe C, Kluth O, Schpe G, Siekmann H, Hpkes J, Rech B 2003 Thin Solid Films 442 167

    [9]

    Ma Q B, Ye Z Z, He H P, Luo Y, Zhu L P, Huang J Y, Zhang Y Z, Zhao B H 2008 Chem. Phys. Chem. 9 529

    [10]

    Meng Y, Yang X L, Chen H X, Shen J, Jiang Y M, Zhang Z J, Hua Z Y 2001 Thin Solid Films 394 219

    [11]

    Gupta R K, Ghosh K, Mishra S R, Kahol P K 2008 Appl. Surf. Sci. 254 1661

    [12]

    Zhang C, Chen X L, Wang F, Yan C B, Huang Q, Zhao Y, Zhang X D, Geng X H 2012 Acta Phys. Sin. 61 238101 (in Chinese) [张翅, 陈新亮, 王斐, 闫聪博, 黄茜, 赵颖, 张晓丹, 耿新华 2012 物理学报 61 238101]

    [13]

    Wu M Y, Yu S H, Chen G H, He L, Yang L, Zhang W F 2015 Appl. Surf. Sci. 324 791

    [14]

    Cao F, Wand Y D, Liu D L, Yin J Z, Guo B J, Li L, An Y P 2009 Chin. Phys. Lett. 26 034210

    [15]

    Qadri S B, Kim H, Horwitz J S, Chrisey D B 2000 J. Appl. Phys. 88 6564

    [16]

    Ngoma B D, Mpahane T, Manyala N, Nemraoui O, Buttner U, Kana J B, Fasasi A Y, Maaza M, Bey A C 2009 Appl. Surf. Sci. 255 4153

    [17]

    Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M, Guo W R 2014 Chin. Phys. B 23 047805

    [18]

    Schlenker E, Bakina A, Postelsa B, Mofor A C, Kreyea M, Ronning C, Sievers S, Albrecht M, Siegner U, Kling R, Waag A 2007 Superlattices Microstruct. 42 236

    [19]

    Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801 (in Chinese) [王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹 2012 物理学报 61 137801]

    [20]

    Wang Y F, Zhang X D, Huang Q, Yang F, Meng X D, Song Q G, Zhao Y 2013 Acta Phys. Sin. 62 247802 (in Chinese) [王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖 2013 物理学报 62 247802]

    [21]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [24]

    Wang Q B, Zhou C, Wu J, L T 2013 Opt. Commun. 297 79

    [25]

    Sheetz R M, Ponomareva I, Richter E, Andriotis A N, Menon M 2009 Phys. Rev. B 80 195314

    [26]

    Wang Y F, Zhang X D, Huang Q, Yang F, Liang J H, Zhang D K, Zhao Y 2014 Vacuum 107 6

    [27]

    zgr , Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, Morko H 2005 J. Appl. Phys. 98 041301

    [28]

    Ellmer K 2000 J. Phys. D: Appl. Phys. 33 R17

    [29]

    Singh S, Srinivasa R S, Major S S 2007 Thin Solid Films 515 8718

    [30]

    Li X Y, Li H J, Wang Z J, Xia H, Xiong Z Y, Wang J X, Yang B C 2009 Opt. Commun. 282 247

    [31]

    Miyata T, Suzuki S, Ishii M, Minami T 2002 Thin Solid Films 411 76

    [32]

    Pei Z L, Sun C, Tan M H, Xiao J Q, Guan D H, Huang R F, Wen L S 2001 J. Appl. Phys. 90 3432

    [33]

    Desgreniers S 1998 Phys. Rev. B: Condens. Matter 58 14102

    [34]

    Wang Y F, Huang H Y, Meng X D, Yang F, Nan J Y, Song Q G, Huang Q, Zhao Y, Zhang X D 2015 J. Alloys Compd. 636 102

    [35]

    Burstein E 1954 Phys. Rev. 93 632

    [36]

    Moss T S 1954 Proc. Phys. Soc. London, Sect. B 67 775

    [37]

    Yang P, Gao X H 1981 Journal of Shanxi University (Natural Science Edition) 4 40 (in Chinese) [杨频, 高孝恢 1981 山西大学学报(自然科学版) 4 40]

  • [1] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [2] 王延峰, 谢希成, 刘晓洁, 韩冰, 武晗晗, 连宁宁, 杨富, 宋庆功, 裴海林, 李俊杰. F, Al共掺杂ZnO透明导电薄膜的制备及掺杂机理研究. 物理学报, 2020, 69(19): 197801. doi: 10.7498/aps.69.20200580
    [3] 赵其琛, 郝瑞亭, 刘思佳, 刘欣星, 常发冉, 杨敏, 陆熠磊, 王书荣. 单靶溅射制备铜锌锡硫薄膜及原位退火研究. 物理学报, 2017, 66(22): 226801. doi: 10.7498/aps.66.226801
    [4] 耿超, 郑义, 张永哲, 严辉. 硅薄膜太阳电池表面纳米线阵列光学设计. 物理学报, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [5] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [6] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [7] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [8] 王延峰, 张晓丹, 黄茜, 刘阳, 魏长春, 赵颖. 室温制备低电阻率高透过率H, W共掺杂ZnO薄膜. 物理学报, 2013, 62(1): 017803. doi: 10.7498/aps.62.017803
    [9] 王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖. B掺杂ZnO透明导电薄膜的实验及理论研究. 物理学报, 2013, 62(24): 247802. doi: 10.7498/aps.62.247802
    [10] 王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹. W掺杂ZnO透明导电薄膜的理论及实验研究. 物理学报, 2012, 61(13): 137801. doi: 10.7498/aps.61.137801
    [11] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征. 物理学报, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [12] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [13] 丁万昱, 徐军, 陆文琪, 邓新绿, 董闯. 微波ECR磁控溅射制备SiNx薄膜的XPS结构研究. 物理学报, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [14] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [15] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [16] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [17] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [18] 王宝义, 张仁刚, 张 辉, 万冬云, 魏 龙. ZnO退火条件对硫化法制备的ZnS薄膜特性的影响. 物理学报, 2005, 54(4): 1874-1878. doi: 10.7498/aps.54.1874
    [19] 张仁刚, 王宝义, 张 辉, 马创新, 魏 龙. 不同参数溅射的ZnO薄膜硫化后的特性. 物理学报, 2005, 54(5): 2389-2393. doi: 10.7498/aps.54.2389
    [20] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
计量
  • 文章访问数:  5387
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-03
  • 修回日期:  2016-01-28
  • 刊出日期:  2016-04-05

/

返回文章
返回