搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刻蚀AlN缓冲层对硅衬底N极性n-GaN表面粗化的影响

王光绪 陈鹏 刘军林 吴小明 莫春兰 全知觉 江风益

引用本文:
Citation:

刻蚀AlN缓冲层对硅衬底N极性n-GaN表面粗化的影响

王光绪, 陈鹏, 刘军林, 吴小明, 莫春兰, 全知觉, 江风益

Influence of etching AlN buffer layer on the surface roughening of N-polar n-GaN grown on Si substrate

Wang Guang-Xu, Chen Peng, Liu Jun-Lin, Wu Xiao-Ming, Mo Chun-Lan, Quan Zhi-Jue, Jiang Feng-Yi
PDF
导出引用
  • 研究了等离子体刻蚀AlN缓冲层对硅衬底N极性n-GaN表面粗化行为的影响. 实验结果表明, 表面AlN缓冲层的状态对N极性n-GaN的粗化行为影响很大, 采用等离子体刻蚀去除一部分表面AlN缓冲层即可以有效提高N极性n-GaN在KOH溶液中的粗化效果, AlN缓冲层未经任何刻蚀处理的样品粗化速度过慢, 被刻蚀完全去除AlN缓冲层的样品容易出现粗化过头的现象. 经X射线光电子能谱分析可知, 等离子体刻蚀能够提高样品表面AlN缓冲层Al 2p的电子结合能, 使得样品表面费米能级向导带底靠近, 原子含量测试表明样品表面产生了大量的N空位, N空位提供电子, 使得材料表面费米能级升高, 这降低了KOH溶液和样品表面之间的肖特基势垒, 从而有利于表面粗化的进行. 通过等离子体刻蚀掉表面部分AlN缓冲层, 改善了N极性n-GaN在KOH溶液中的粗化效果, 明显提升了对应发光二级管器件的出光功率.
    Light extraction efficiency of thin-film GaN-based light-emitting-diode (LED) chip can be effectively improved by surface roughening. The film transfer is an indispensable process in the manufacture of thin-film LED chip, which means transferring the LED film from the growth substrate to a new substrate, and then removing the growth substrate. After the growth substrate is removed, the buffer layer is used to cushion the mismatch between the substrate and the n-GaN exposed, which has a significant influence on the roughening behavior of n-GaN. Unlike the GaN buffer layer grown on sapphire substrate, AlN buffer layer is usually used when n-GaN is grown on Si substrate. In this paper, the surface treatment of the AlN buffer layer by reactive ion etching (RIE) is used to improve the surface roughening effect of N-polar n-GaN grown on the silicon substrate in the hot alkali solution (85 ℃, 20% KOH mass concentration of solution), and the mechanism of the influence of the surface treatment on the roughening behavior is discussed by X-ray photoelectron spectroscopy (XPS) and other advanced methods. The degree of etching surface AlN buffer layer is detected by energy dispersive spectrometer (EDS), the sample surface state after RIE etching is analyzed by XPS, the morphology of the surface roughening is observed by scanning electron microscope (SEM) and the effect of surface roughening on the optical power of LED devices is verified by the photoelectric performance test. The EDS results show that the AlN buffer layer remains after RIE etching 10-30 min and the AlN disappears after RIE etching for 40 min. The SEM results show that surface states of AlN buffer layer have a great influence on the roughening behavior of n-GaN in KOH solution. The sample with part of AlN buffer layer has a good roughening effect and proper size hexagonal pyramid distributing uniformly. In addition, the rate of coarsening is too fast for the samples with AlN buffer layer completely removed, while the rate is too slow for the samples without any etching process. In summation, using RIE etching to remove a part of the AlN buffer layer can effectively improve the roughening effect of N-polar n-GaN in KOH solution. We believe that lots of N-vacancies are produced on the surface of the sample after RIE etching, which provides the electrons, thereby causing the surface Fermi level to be elevated. The XPS analysis shows that the RIE etching can improve the electronic binding energy of Al 2p of AlN buffer layer, resulting in a shift of the surface Fermi level near to the conduction band, and reducing the Schottky barrier between the KOH solution and the surface of the sample, which is beneficial to the surface roughening. To remove a part of the AlN buffer by using plasma etching layer can improve the roughening effect of N-polar n-GaN in KOH solution, resulting in the output power of the corresponding LED device being improved obviously.
      通信作者: 王光绪, guangxuwang@ncu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61334001, 11364034, 21405076)、国家科技支撑计划(批准号: 2011BAE32B01)、国家高技术研究发展计划(批准号: 2011AA03A101)和江西省科技支撑计划 (批准号: 20151BBE50111)资助的课题.
      Corresponding author: Wang Guang-Xu, guangxuwang@ncu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61334001, 11364034, 21405076), the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2011BAE32B01), the National High Technology Research and Development Program of China (Grant No. 2011AA03A101), and the Key Technology Research and Development Program of Jiangxi Province, China (Grant No. 20151BBE50111).
    [1]

    Wang G, Tao X, Liu J, Jiang F 2015 Semicond. Sci. Tech. 30 15018

    [2]

    Luo Y, Wang L {2014 Physics 43 802 (in Chinese) [罗毅, 汪莱 2014 物理 43 802]

    [3]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F Y 2005 J. Cryst. Growth 285 312

    [4]

    Jiang F Y, Liu J L, Wang L, et al. 2015 Sci. Sin. Phys.: Mech. Astron. 45 7302 (in Chinese) [江风益, 刘军林, 王立 等 2015 中国科学: 物理学 力学 天文学 45 7302]

    [5]

    Wang G X, Tao X X, Xiong C B, Liu J L, Feng F F, Zhang M, Jiang F Y 2011 Acta Phys. Sin. 60 078503 (in Chinese) [王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益 2011 物理学报 60 078503]

    [6]

    Mao Q H, Liu J L, Quan Z J, Wu X M, Zhang M, Jiang F Y 2015 Acta Phys. Sin. 64 107801 (in Chinese) [毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益 2015 物理学报 64 107801]

    [7]

    Fujii T, Gao Y, Sharma R, Hu E L, Denbaars S P, Nakamura S 2004 Appl. Phys. Lett. 84 855

    [8]

    Gao Y, Fujii T, Sharma R, Fujito K, Denbaars S P, Nakamura S, Hu E L 2004 Jpn. J. Appl. Phys. 43 L637

    [9]

    Zhou Y H, Tang Y W, Rao J P, Jiang F Y {2009 Acta Opt. Sin. 29 252 (in Chinese) [周印华, 汤英文, 饶建平, 江风益 2009 光学学报 29 252]

    [10]

    Xiong C, Jiang F, Fang W, Wang L, Mo C, Liu H 2007 J. Lumin. 122-123 185

    [11]

    Liu M G, Wang Y Q, Yang Y B, et al. 2015 Chin. Phys. B 24 038503

    [12]

    Gong Z N, Yun F, Ding W, et al. 2015 Acta Phys. Sin. 64 018501 (in Chinese) [弓志娜, 云峰, 丁文 等 2015 物理学报 64 018501]

    [13]

    Liu J, Zhang J, Mao Q, Wu X, Jiang F 2013 Crystengcomm 15 3372

    [14]

    Doan M H, Kim S, Lee J J, Lim H, Rotermund F, Kim K 2012 Aip. Adv. 2 22122

    [15]

    Kim D W, Lee H Y, Yoo M C, Yeom G Y 2005 Appl. Phys. Lett. 86 52108

    [16]

    Wang G X, Xiong C B, Liu J L, Jiang F Y 2011 Appl. Surf. Sci. 257 8675

    [17]

    Qiu H, Liu J L, Wang L, Jiang F Y 2011 Chin. J. Lumin. 32 603 (in Chinese) [邱虹, 刘军林, 王立, 江风益 2011 发光学报 32 603]

    [18]

    Liu J, Feng F, Zhou Y, Zhang J, Jiang F 2011 Appl. Phys. Lett. 99 111112

    [19]

    Zhuang D, Edgar J H 2005 Materials Science and Engineering: R: Reports 48 1

    [20]

    Gao Y D, Craven M D, Speck J S, Denbaars S P, Hu E L 2004 Appl. Phys. Lett. 84 3322

    [21]

    Chen E H, Mcinturff D T, Chin T P, Melloch M R, Woodall J M 1996 Appl. Phys. Lett. 68 1678

    [22]

    Steinhoff G, Hermann M, Schaff W J, Eastman L F, Stutzmann M, Eickhoff M 2003 Appl. Phys. Lett. 83 177

    [23]

    Jang H W, Jeon C M, Kim J K, Lee J 2001 Appl. Phys. Lett. 78 2015

  • [1]

    Wang G, Tao X, Liu J, Jiang F 2015 Semicond. Sci. Tech. 30 15018

    [2]

    Luo Y, Wang L {2014 Physics 43 802 (in Chinese) [罗毅, 汪莱 2014 物理 43 802]

    [3]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F Y 2005 J. Cryst. Growth 285 312

    [4]

    Jiang F Y, Liu J L, Wang L, et al. 2015 Sci. Sin. Phys.: Mech. Astron. 45 7302 (in Chinese) [江风益, 刘军林, 王立 等 2015 中国科学: 物理学 力学 天文学 45 7302]

    [5]

    Wang G X, Tao X X, Xiong C B, Liu J L, Feng F F, Zhang M, Jiang F Y 2011 Acta Phys. Sin. 60 078503 (in Chinese) [王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益 2011 物理学报 60 078503]

    [6]

    Mao Q H, Liu J L, Quan Z J, Wu X M, Zhang M, Jiang F Y 2015 Acta Phys. Sin. 64 107801 (in Chinese) [毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益 2015 物理学报 64 107801]

    [7]

    Fujii T, Gao Y, Sharma R, Hu E L, Denbaars S P, Nakamura S 2004 Appl. Phys. Lett. 84 855

    [8]

    Gao Y, Fujii T, Sharma R, Fujito K, Denbaars S P, Nakamura S, Hu E L 2004 Jpn. J. Appl. Phys. 43 L637

    [9]

    Zhou Y H, Tang Y W, Rao J P, Jiang F Y {2009 Acta Opt. Sin. 29 252 (in Chinese) [周印华, 汤英文, 饶建平, 江风益 2009 光学学报 29 252]

    [10]

    Xiong C, Jiang F, Fang W, Wang L, Mo C, Liu H 2007 J. Lumin. 122-123 185

    [11]

    Liu M G, Wang Y Q, Yang Y B, et al. 2015 Chin. Phys. B 24 038503

    [12]

    Gong Z N, Yun F, Ding W, et al. 2015 Acta Phys. Sin. 64 018501 (in Chinese) [弓志娜, 云峰, 丁文 等 2015 物理学报 64 018501]

    [13]

    Liu J, Zhang J, Mao Q, Wu X, Jiang F 2013 Crystengcomm 15 3372

    [14]

    Doan M H, Kim S, Lee J J, Lim H, Rotermund F, Kim K 2012 Aip. Adv. 2 22122

    [15]

    Kim D W, Lee H Y, Yoo M C, Yeom G Y 2005 Appl. Phys. Lett. 86 52108

    [16]

    Wang G X, Xiong C B, Liu J L, Jiang F Y 2011 Appl. Surf. Sci. 257 8675

    [17]

    Qiu H, Liu J L, Wang L, Jiang F Y 2011 Chin. J. Lumin. 32 603 (in Chinese) [邱虹, 刘军林, 王立, 江风益 2011 发光学报 32 603]

    [18]

    Liu J, Feng F, Zhou Y, Zhang J, Jiang F 2011 Appl. Phys. Lett. 99 111112

    [19]

    Zhuang D, Edgar J H 2005 Materials Science and Engineering: R: Reports 48 1

    [20]

    Gao Y D, Craven M D, Speck J S, Denbaars S P, Hu E L 2004 Appl. Phys. Lett. 84 3322

    [21]

    Chen E H, Mcinturff D T, Chin T P, Melloch M R, Woodall J M 1996 Appl. Phys. Lett. 68 1678

    [22]

    Steinhoff G, Hermann M, Schaff W J, Eastman L F, Stutzmann M, Eickhoff M 2003 Appl. Phys. Lett. 83 177

    [23]

    Jang H W, Jeon C M, Kim J K, Lee J 2001 Appl. Phys. Lett. 78 2015

  • [1] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响. 物理学报, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [2] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究. 物理学报, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [3] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [4] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [5] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响. 物理学报, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [6] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响. 物理学报, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [7] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究. 物理学报, 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [8] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究. 物理学报, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [9] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响. 物理学报, 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [10] 陈焕庭, 吕毅军, 高玉琳, 陈忠, 庄榕榕, 周小方, 周海光. 功率型GaN基发光二极管芯片表面温度及亮度分布的物理特性研究. 物理学报, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [11] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究. 物理学报, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [12] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究. 物理学报, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [13] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [14] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性. 物理学报, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [15] 汪莱, 王磊, 任凡, 赵维, 王嘉星, 胡健楠, 张辰, 郝智彪, 罗毅. AlN/蓝宝石模板上生长的GaN研究. 物理学报, 2010, 59(11): 8021-8025. doi: 10.7498/aps.59.8021
    [16] 江洋, 罗毅, 汪莱, 李洪涛, 席光义, 赵维, 韩彦军. 柱状与孔状图形衬底对MOVPE生长GaN体材料及LED器件的影响. 物理学报, 2009, 58(5): 3468-3473. doi: 10.7498/aps.58.3468
    [17] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [18] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [19] 杨吉军, 徐可为. 多晶薄膜表面粗化与生长方式转变. 物理学报, 2007, 56(2): 1110-1115. doi: 10.7498/aps.56.1110
    [20] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
计量
  • 文章访问数:  5800
  • PDF下载量:  281
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-08
  • 修回日期:  2016-01-02
  • 刊出日期:  2016-04-05

/

返回文章
返回