搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受限钠盐水溶液孔外结晶现象

于同旭 张文彬 纪爱玲 王强

引用本文:
Citation:

受限钠盐水溶液孔外结晶现象

于同旭, 张文彬, 纪爱玲, 王强

Efflorescences of confined aqueous sodiumsalt solutions

Yu Tong-Xu, Zhang Wen-Bin, Ji Ai-Ling, Wang Qiang
PDF
导出引用
  • 多孔材料内含盐水溶液中离子的析出结晶是造成多孔结构破坏的重要因素, 因此在建筑保护和地貌学研究中受到了极大关注. 现有研究主要集中于微孔介质中盐的孔内结晶行为. 本文对比研究了限制于纳孔硅胶颗粒孔隙内的NaCl, NaNO3, Na2SO4三种盐溶液在蒸发过程中盐的孔外结晶行为. 利用扫描电子显微镜对所形成晶体的形貌进行了表征. 实验结果表明: 1) 随孔径从2 nm增加至15 nm, NaCl和NaNO3在硅胶颗粒表面的结晶由晶粒转变为晶须形态, 而Na2SO4则由晶须转变为晶粒形态; 2) NaCl和NaNO3晶须的生长主要沿垂直于颗粒表面的方向, 而Na2SO4晶须则在硅胶颗粒表面斜向生长, 后一种生长方式对硅胶颗粒产生横向的应力, 从而对孔结构具有更强的破坏作用; 3) NaNO3的细长晶须所具有的分支和珠链结构表明其在结晶过程中发生了Plateau-Rayleigh失稳.
    Owing to its destructive power to porous structures such as buildings and rocks, salt weathering has attracted considerable attention in the community of civil engineers and geomorphologists, who devote their efforts to conservations of architecture and engineering structures afflicted by salt attack, and to the investigation of natural landscape caused by the same group of processes, respectively. Precipitation of dissolved salts is a direct cause of salt weathering effect. Crystallization phenomena in salt weathering can be crudely categorized under efflorescence and subflorescence with respect to the distinct precipitation sites, and the latter is believed to be able to cause more destructions to porous structure. In contrast to subflorescence for which even models of statistical dynamics have been well-established, efflorescence has drawn less attention, partly because of the complexity of constructing a sound theoretical model to describe the mass transport process there involved. As a serie of sodium salts is the main culprit of salt weathering, the current work deals with experimental study of efflorescences of the aqueous NaCl, NaNO3 and Na2SO4 solutions on the surface of porous silica gel particles. We investigate the influences of salt concentration and pore size on the crystal morphology arising in efflorescence by using scanning electron microscopy. It is found that though Na2SO4 effloresces on the specimen surface, its inclination towards subflorescence makes the whiskers appear on specimen with smaller pore radii at low concentrations, which differs obviously from the cases of NaCl and NaNO3. Moreover, unlike the upright growths of NaCl and NaNO3 crystals, the whiskers of Na2SO4 are always oblique to the specimen surface, and the large lateral stress to the specimen thus induced may become another factor of its destructive power apart from the subflorescing trend. The crystallization behaviors of Na2SO4, i.e., both the oblique whiskers and regular crystallites, indicate that mirabilite (Na2SO410H2O) is the main precipitation, which is consistent with the high relative humidity employed in this article. Remarkably, the thinnest whiskers of NaNO3 exhibit the branching and ball-chain structures, indicating that plateau-Rayleigh instablility occurs in the growth process. Our results are expected to inspire more deliberate studies for the full understanding of detailed processes and mechanism involved in efflorescence of aqueous salt solutions.
      通信作者: 王强, qwang@aphy.iphy.ac.cn
    • 基金项目: 中国科学院知识创新工程重要方向性项目(批准号: 1731300500030)、国家自然科学基金(批准号: 11290161, 51172272, 10904165)和国家重点基础研究发展计划(批准号: 2012CB933002)资助的课题.
      Corresponding author: Wang Qiang, qwang@aphy.iphy.ac.cn
    • Funds: Project supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (Grant No. 1731300500030), the National Natural Science Foundation of China (Grant Nos. 11290161, 51172272, 10904165), and the National Basic Research Program of China (Grant No. 2012CB933002).
    [1]

    Goudie A, Viles H 1997 Salt Weathering Hazards (New York: John Viley Sons, Ltd.) pp1-3

    [2]

    Rodriguez-Navarro C, Doehne E 1999 Earth Surf. Process. Landforms 24 191

    [3]

    Scherer G W 1999 Cem. Concr. Res. 29 1347

    [4]

    Flatt R J 2002 J. Cryst. Growth 242 435

    [5]

    Steiger M 2005 J. Cryst. Growth 282 455

    [6]

    Steiger M 2005 J. Cryst. Growth 282 470

    [7]

    Coussy O 2006 J. Mech. Phys. Solids 54 1517

    [8]

    Ruedrich J, Siegesmund S 2007 Environ. Geol. 52 225

    [9]

    Liu X X, Wang Q, Huang X F, Yang S H, Li C X, Niu X J, Shi Q F, Sun G, Lu K Q 2010 J. Phys. Chem. B 114 4145

    [10]

    Zehnder K, Arnold A 1989 J. Cryst. Growth 97 513

    [11]

    LeBret J B, Norton M G 2003 J. Mater. Res. 18 585

    [12]

    Hu C C, Tsai Y D, Lin C C, Lee G L, Chen S W, Lee T C, Wen T C 2009 J. Alloy. Compd. 472 121

    [13]

    Sears G W 1955 Acta Metall. 3 367

    [14]

    Sears G W 1957 J. Chem. Phys. 26 1549

    [15]

    Plateau J 1873 Transl. Annual Reports of the Smithsonian Institution 1863

    [16]

    Rayleigh L 1878 Proc. London Math. Soc. 10 4

  • [1]

    Goudie A, Viles H 1997 Salt Weathering Hazards (New York: John Viley Sons, Ltd.) pp1-3

    [2]

    Rodriguez-Navarro C, Doehne E 1999 Earth Surf. Process. Landforms 24 191

    [3]

    Scherer G W 1999 Cem. Concr. Res. 29 1347

    [4]

    Flatt R J 2002 J. Cryst. Growth 242 435

    [5]

    Steiger M 2005 J. Cryst. Growth 282 455

    [6]

    Steiger M 2005 J. Cryst. Growth 282 470

    [7]

    Coussy O 2006 J. Mech. Phys. Solids 54 1517

    [8]

    Ruedrich J, Siegesmund S 2007 Environ. Geol. 52 225

    [9]

    Liu X X, Wang Q, Huang X F, Yang S H, Li C X, Niu X J, Shi Q F, Sun G, Lu K Q 2010 J. Phys. Chem. B 114 4145

    [10]

    Zehnder K, Arnold A 1989 J. Cryst. Growth 97 513

    [11]

    LeBret J B, Norton M G 2003 J. Mater. Res. 18 585

    [12]

    Hu C C, Tsai Y D, Lin C C, Lee G L, Chen S W, Lee T C, Wen T C 2009 J. Alloy. Compd. 472 121

    [13]

    Sears G W 1955 Acta Metall. 3 367

    [14]

    Sears G W 1957 J. Chem. Phys. 26 1549

    [15]

    Plateau J 1873 Transl. Annual Reports of the Smithsonian Institution 1863

    [16]

    Rayleigh L 1878 Proc. London Math. Soc. 10 4

  • [1] 杨迎国, 冯尚蕾, 李丽娜. 溶液法原位大面积制备钙钛矿光电薄膜成膜的同步辐射可视化结晶过程研究. 物理学报, 2024, 73(6): 063201. doi: 10.7498/aps.73.20231847
    [2] 毛蕊, 杨启容, 李昭莹, 闫晨宣, 何卓亚. 介孔内太阳盐凝固特性的尺度效应和结构效应分析. 物理学报, 2022, 71(11): 110503. doi: 10.7498/aps.71.20212388
    [3] 侯磊, 王俊喃, 王磊, 施卫. α-乳糖水溶液太赫兹吸收光谱实验研究及模拟分析. 物理学报, 2021, 70(24): 243202. doi: 10.7498/aps.70.20211716
    [4] 王强, 曹则贤. 水溶液中结合水的定义与量化. 物理学报, 2019, 68(1): 015101. doi: 10.7498/aps.68.20181742
    [5] 贾琳, 王理林, 申洁楠, 张忠明, 李俊杰, 王锦程, 王志军. 聚乙烯醇水溶液二维定向凝固的微观组织演化. 物理学报, 2017, 66(19): 196402. doi: 10.7498/aps.66.196402
    [6] 欧阳世根. 过冷水溶液中的空间光孤子. 物理学报, 2017, 66(9): 090505. doi: 10.7498/aps.66.090505
    [7] 李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥. CdTe量子点与罗丹明B水溶液体系下的双光子激发荧光共振能量转移. 物理学报, 2015, 64(10): 108201. doi: 10.7498/aps.64.108201
    [8] 关魁文, 李新宇, 刘佳, 孙长森. 细胞外溶液的近红外光热响应取决于其吸收特性. 物理学报, 2013, 62(5): 058702. doi: 10.7498/aps.62.058702
    [9] 周超, 陈伟中, 崔炜程. 稀土盐水溶液单泡声致发光中的特征光谱. 物理学报, 2013, 62(8): 087805. doi: 10.7498/aps.62.087805
    [10] 王丰, 贾国柱, 刘莉, 刘凤海, 梁文海. 温度相关的微波频率下氯化钠水溶液介电特性. 物理学报, 2013, 62(4): 048701. doi: 10.7498/aps.62.048701
    [11] 刘俊, 林皋, 李建波. 带双层开孔外筒的圆筒结构的水动力特性研究. 物理学报, 2012, 61(12): 120202. doi: 10.7498/aps.61.120202
    [12] 罗莹莹, 詹杰民, 李毓湘. 多孔介质中盐指现象的数值模拟. 物理学报, 2008, 57(4): 2306-2313. doi: 10.7498/aps.57.2306
    [13] 李 明, 诸跃进. 嵌段共聚物受限于软孔内的自组装. 物理学报, 2008, 57(12): 7555-7564. doi: 10.7498/aps.57.7555
    [14] 詹杰民, 李毓湘. 温盐双扩散均衡场中的振荡现象. 物理学报, 2002, 51(4): 828-834. doi: 10.7498/aps.51.828
    [15] 冯若. 聚丙烯酰胺水溶液的超声研究. 物理学报, 1980, 29(7): 940-944. doi: 10.7498/aps.29.940
    [16] 刘光照. 在熔融金属溶液中石墨在金刚石稳定区结晶的可能性. 物理学报, 1979, 28(3): 334-340. doi: 10.7498/aps.28.334
    [17] 碘酸锂晶体研究小组. α-和β-碘酸锂晶体在水溶液中的形成条件和相对稳定性. 物理学报, 1975, 24(2): 91-96. doi: 10.7498/aps.24.91
    [18] 钱祖文. 化学反应媒质中的声吸收理论及关于MgSO4水溶液的弛豫机构. 物理学报, 1962, 18(10): 501-508. doi: 10.7498/aps.18.501
    [19] 张鸿钧, 张志三. 罗谢尔盐的振动光谱. 物理学报, 1959, 15(10): 559-564. doi: 10.7498/aps.15.559
    [20] 吴大猷, 江安才. 三价饰之盐之吸收光谱. 物理学报, 1936, 2(1): 10-14. doi: 10.7498/aps.2.10
计量
  • 文章访问数:  5330
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-08
  • 修回日期:  2016-01-06
  • 刊出日期:  2016-04-05

/

返回文章
返回