搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑体辐射法测量电介质内部被超短激光脉冲加工后的温度

王承伟 赵全忠 钱静 黄媛媛 王关德 李阳博 柏锋 范文中 李虹瑾

引用本文:
Citation:

黑体辐射法测量电介质内部被超短激光脉冲加工后的温度

王承伟, 赵全忠, 钱静, 黄媛媛, 王关德, 李阳博, 柏锋, 范文中, 李虹瑾

Measuring the internal temperature of dielectrics machined by the ultrashort laser pulse through the black-body irradiation method

Wang Cheng-Wei, Zhao Quan-Zhong, Qian Jing, Huang Yuan-Yuan, Wang Guan-De, Li Yang-Bo, Bai Feng, Fan Wen-Zhong, Li Hong-Jin
PDF
导出引用
  • 黑体辐射法可用于测量电介质内部被超短脉冲激光加工后, 电子和晶格的瞬时温度. 当一个超短激光脉冲通过物镜聚焦到石英玻璃内部时, 在焦点附近诱导出微结构. 微结构中热影响区的最大宽度为16 m, 热影响区发出的黑体辐射谱通过物镜、带耦合透镜的光纤、光谱仪以及ICCD组装成的系统记录. 测试系统收集了电介质内部被单个激光脉冲辐照后, 热影响区发射的黑体辐射谱, 然后用Planck公式拟合黑体辐射谱, 得到电介质温度. 电介质被超短激光脉冲辐照后, 首先电介质中的价带电子通过强场电离和雪崩电离跃迁到导带, 高温高压的等离子体以冲击波的形式向外运动, 通过对流方式传递能量, 该过程发生在激光辐照石英后21 ns内. 21 ns 后冲击波转化为声波, 中心的气态石英通过热扩散方式影响周围的固态区域, 石英温度缓慢下降. 在时刻t (单位ns), 石英玻璃的温度为5333 exp(-t/1289) K. 石英经过3.72 s将冷却到室温, 因此重复频率在269 kHz以上的激光, 加工石英玻璃时具有热累积效应.
    Black-body irradiation method can be utilized for measuring the instantaneous temperatures of electrons and lattice in dielectric machined by the ultrashort laser. One ultrashort laser pulse, of which the pulse energy and pulse duration are 240 J and 599 fs respectively, is focused into the fused silica by objective lenses with a magnification of 10 times. The focal point is at the position of 874 m. The microstructure induced by laser near the focal point is 16 m wide and 104 m long. The central region of the microstructure is heavily damaged, and the marginal region is slightly modified. The black-body irradiation spectra are recorded by the system that is composed of objective lenses, a fiber with two lenses, a spectrometer and an intensified charge coupled device (ICCD). Furthermore, other imaging elements can also be used as alternative to objective lenses, for measuring black-body spectra. The image point, which is conjunctive with the machined region due to the imaging effect of the objective lenses, is coupled into the fiber by one lens. Another lens collimates the diverging light beam from the fiber. The collimated light is incident into the spectrometer and dispersed on the ICCD. Because the minimum gate width of ICCD is much larger than the coupled time of electron and lattice, the temperature of electron equals that of lattice when they are characterized by the black-body irradiation method. The temperatures of the electrons and the lattice are regarded as the temperature of dielectric. When the system acquires the reflection peak of incident ultrashort laser, the delay is set to be 0 ns, and the central wavelength of the peak is 784 nm. Therefore, to eliminate the reflection peak, the second harmonic and supercontinuum spectra, the delay for black-body irradiation acquirement is set to be above 6 ns and the machined region should be confined inside the dielectric. The system collects the black-body spectra emitted by the heat-affected zone in fused silica 981 ns after the fused silica has been irradiated by single ultrashort laser pulse. And then the spectra are fitted by the Planck formula to obtain the temperature of dielectric. After the dielectric is processed by the ultrashort laser pulse, the valence electrons of the dielectric transit to the conduction band via strong filed ionization and avalanche ionization. The plasma with high temperature and pressure moves outward in the form of shockwave. The shockwave transfers energy by convection after fused silica has been machined by laser pulse. Due to inverse Bremsstrahlung effect during the avalanche ionization, nearly all the incident laser energy is absorbed by the fused silica. The irradiated energy is only 1.3% of the absorbed energy, so the ways of heat transfer are mainly convection and heat diffusion. 21 ns later the shock wave turns into acoustic wave, so central gaseous fused silica affects the surrounding region through heat diffusion and the temperature of fused silica decreases slowly. The temperature of fused silica is 5333 exp(-t/1289) K at time t (unit: ns). The temperature drops down to room temperature 3.72s after the fused silica has been irradiated by one ultrashort laser pulse. If another laser pulse arrives at fused silica before 3.72s, the temperature rises on the basis of the previous laser pulse. In other words, the heat accumulation effect cannot be ignored if the repetition rate of ultrashort laser is more than 269 kHz.
      通信作者: 赵全忠, zqz@siom.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11374316)资助的课题.
      Corresponding author: Zhao Quan-Zhong, zqz@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374316).
    [1]

    Sugioka K, Cheng Y 2013 (Boca Raton: CRC Press) p6

    [2]

    Balling P, Schou J 2013 Rep. Prog. Phys. 76 036502

    [3]

    Wang C W, Zhao Q Z, Zhang Y, Wang G D, Qian J, Bao Z J, Li Y B, Bai F, Fan W Z 2015 Acta Phys. Sin. 64 205204 (in Chinese) [王承伟, 赵全忠, 张扬, 王关德, 钱静, 鲍宗杰, 李阳博, 柏锋, 范文中 2015 物理学报 64 205204]

    [4]

    Chimier B, Uteza O, Sanner N, Sentis M, Itina T, Lassonde P, Legare F, Vidal F, Kieffer J C 2011 Phys. Rev. B 84 1

    [5]

    Jiang L, Tsai H L 2008 J. Appl. Phys. 104 093101

    [6]

    Wang C, Zhao Q, Qian J, Li Y, Wang G, Zhang Y, Pan H, Bao Z, Bai F, Fan W 2015 Proc. SPIE 9532 Shanghai, May 17, 2015 p953200

    [7]

    Chichkov B N, Momma C, Nolte S, Alvensleben F V, Tunnermann A 1996 Appl. Phys. A 63 109

    [8]

    Liu J, Schroeder H, Chin S L, Li R, Yu W, Xu Z 2005 Phys. Rev. A 72 1

    [9]

    Ji Z G 2010 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences) (in Chinese) [季忠刚 2010 博士学位论文 (北京: 中国科学院)]

    [10]

    Toftmann B, Schou J, Hansen T T, Lunney J G 2000 Phys. Rev. Lett. 84 3998

    [11]

    Tran K A, Grigorov Y V, Nguyen V H, Rehman Z U, Le N T, Janulewicz K A 2015 Proc. SPIE 9532 Shanghai, May 17, 2015 p953205

    [12]

    Puerto D, Siegel J, Gawelda W, Galvan-Sosa M, Ehrentraut L, Bonse J, Solis J 2010 J. Opt. Soc. Am. B 27 1065

    [13]

    Nakimana A, Tao H Y, Hao Z Q, Sun C K, Xun G, Lin J Q 2013 Chin. Phys. B 22 14209

    [14]

    Chen M, Li S, Cui Q Q, Liu X D 2013 Chin. Phys. B 22 106101

    [15]

    Carr C W, Radousky H B, Rubenchik A M, Feit M D, Demos S G 2004 Phys. Rev. Lett. 92 087401

    [16]

    Momma C, Nolte S, Chichkov B N, Alvensleben F V, Tnnermann A 1997 Appl. Surf. Sci. 109 15

    [17]

    Carr C W, Feit M D, Rubenchik A M, Mange P D, Kucheyev S O, Shirk M D, Radousky H B, Demos S G 2005 Opt. Lett. 30 661

    [18]

    Carr C W, Feit M D, Rubenchik A M, Demange P P, Kucheyev S O, Shirk M D, Radousky H B, Demos S G 2005 Proc. SPIE 5647 494

    [19]

    Linde D V D 1994 Laser Interactions with Atoms, Solids and Plasmas (New York: Plenum Press) p207

    [20]

    Sanz M, Castillejo M, Amoruso S, Ausanio G, Bruzzese R, Wang X 2010 Appl. Phys. A 101 639

    [21]

    Amoruso S, Bruzzese R, Spinelli N, Velotta R, Vitiello M, Wang X, Ausanio G, Iannotti V, Lanotte L 2004 Appl. Phys. Lett. 84 4502

    [22]

    Albert O, Roger S, Glinec Y, Loulergue J C, Etchepare J, Boulmer-Leborgne C, Perrire J, Millon E 2003 Appl. Phys. A 76 319

    [23]

    Zhao Q Z, Qiu J R 2005 Physics 34 660 (in Chinese) [赵全忠, 邱建荣 2005 物理 34 660]

    [24]

    Luo F F, Song J, Hu X, Sun H Y, Lin G, Pan H H, Cheng Y, Liu L, Qiu J R, Zhao Q Z, Xu Z Z 2011 Opt. Lett. 36 2125

    [25]

    He F, Cheng Y 2007 Chin. J. Lasers 34 595 (in Chinese) [何飞, 程亚 2007 中国激光 34 595]

    [26]

    Malitson I H 1965 J. Opt. Soc. Am. 55 1205

    [27]

    Shimotsuma Y, Hirao K, Kazansky P G, Qiu J 2005 Jpn. J. Appl. Phys. 44 4735

    [28]

    Wu S, Wu D, Xu J, Hanada Y, Suganuma R, Wang H, Makimura T, Sugioka K, Midorikawa K 2012 Opt. Express 20 28893

    [29]

    Pan J L 1994 Glass Technology (Beijing: China Light Industry Press) p81 (in Chinese) [潘金龙 1994 玻璃工艺学 (北京: 中国轻工业出版社) 第81页]

    [30]

    Eaton S M, Zhang H B, Herman P R, Yoshino F 2005 Opt. Express 13 4708

    [31]

    Tzortzakis S, Sudrie L, Franco M, Prade B, Mysyrowicz A, Couairon A, Berg L 2001 Phys. Rev. Lett. 87 213902

    [32]

    Sun Q, Jiang H, Liu Y, Wu Z, Yang H, Gong Q 2005 Opt. Lett. 30 320

    [33]

    Amoruso S, Ausanio G, Bruzzese R, Vitiello M, Wang X 2005 Phys. Rev. B 7 1

    [34]

    Liao Y, Zeng B, Qiao L, Liu L, Sugioka K, Cheng Y 2014 Appl. Phys. A 114 223

    [35]

    Eaton S M, Zhang H, Ng M L, Li J, Chen W J, Ho S, Herman P R 2008 Opt. Express 16 9443

  • [1]

    Sugioka K, Cheng Y 2013 (Boca Raton: CRC Press) p6

    [2]

    Balling P, Schou J 2013 Rep. Prog. Phys. 76 036502

    [3]

    Wang C W, Zhao Q Z, Zhang Y, Wang G D, Qian J, Bao Z J, Li Y B, Bai F, Fan W Z 2015 Acta Phys. Sin. 64 205204 (in Chinese) [王承伟, 赵全忠, 张扬, 王关德, 钱静, 鲍宗杰, 李阳博, 柏锋, 范文中 2015 物理学报 64 205204]

    [4]

    Chimier B, Uteza O, Sanner N, Sentis M, Itina T, Lassonde P, Legare F, Vidal F, Kieffer J C 2011 Phys. Rev. B 84 1

    [5]

    Jiang L, Tsai H L 2008 J. Appl. Phys. 104 093101

    [6]

    Wang C, Zhao Q, Qian J, Li Y, Wang G, Zhang Y, Pan H, Bao Z, Bai F, Fan W 2015 Proc. SPIE 9532 Shanghai, May 17, 2015 p953200

    [7]

    Chichkov B N, Momma C, Nolte S, Alvensleben F V, Tunnermann A 1996 Appl. Phys. A 63 109

    [8]

    Liu J, Schroeder H, Chin S L, Li R, Yu W, Xu Z 2005 Phys. Rev. A 72 1

    [9]

    Ji Z G 2010 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences) (in Chinese) [季忠刚 2010 博士学位论文 (北京: 中国科学院)]

    [10]

    Toftmann B, Schou J, Hansen T T, Lunney J G 2000 Phys. Rev. Lett. 84 3998

    [11]

    Tran K A, Grigorov Y V, Nguyen V H, Rehman Z U, Le N T, Janulewicz K A 2015 Proc. SPIE 9532 Shanghai, May 17, 2015 p953205

    [12]

    Puerto D, Siegel J, Gawelda W, Galvan-Sosa M, Ehrentraut L, Bonse J, Solis J 2010 J. Opt. Soc. Am. B 27 1065

    [13]

    Nakimana A, Tao H Y, Hao Z Q, Sun C K, Xun G, Lin J Q 2013 Chin. Phys. B 22 14209

    [14]

    Chen M, Li S, Cui Q Q, Liu X D 2013 Chin. Phys. B 22 106101

    [15]

    Carr C W, Radousky H B, Rubenchik A M, Feit M D, Demos S G 2004 Phys. Rev. Lett. 92 087401

    [16]

    Momma C, Nolte S, Chichkov B N, Alvensleben F V, Tnnermann A 1997 Appl. Surf. Sci. 109 15

    [17]

    Carr C W, Feit M D, Rubenchik A M, Mange P D, Kucheyev S O, Shirk M D, Radousky H B, Demos S G 2005 Opt. Lett. 30 661

    [18]

    Carr C W, Feit M D, Rubenchik A M, Demange P P, Kucheyev S O, Shirk M D, Radousky H B, Demos S G 2005 Proc. SPIE 5647 494

    [19]

    Linde D V D 1994 Laser Interactions with Atoms, Solids and Plasmas (New York: Plenum Press) p207

    [20]

    Sanz M, Castillejo M, Amoruso S, Ausanio G, Bruzzese R, Wang X 2010 Appl. Phys. A 101 639

    [21]

    Amoruso S, Bruzzese R, Spinelli N, Velotta R, Vitiello M, Wang X, Ausanio G, Iannotti V, Lanotte L 2004 Appl. Phys. Lett. 84 4502

    [22]

    Albert O, Roger S, Glinec Y, Loulergue J C, Etchepare J, Boulmer-Leborgne C, Perrire J, Millon E 2003 Appl. Phys. A 76 319

    [23]

    Zhao Q Z, Qiu J R 2005 Physics 34 660 (in Chinese) [赵全忠, 邱建荣 2005 物理 34 660]

    [24]

    Luo F F, Song J, Hu X, Sun H Y, Lin G, Pan H H, Cheng Y, Liu L, Qiu J R, Zhao Q Z, Xu Z Z 2011 Opt. Lett. 36 2125

    [25]

    He F, Cheng Y 2007 Chin. J. Lasers 34 595 (in Chinese) [何飞, 程亚 2007 中国激光 34 595]

    [26]

    Malitson I H 1965 J. Opt. Soc. Am. 55 1205

    [27]

    Shimotsuma Y, Hirao K, Kazansky P G, Qiu J 2005 Jpn. J. Appl. Phys. 44 4735

    [28]

    Wu S, Wu D, Xu J, Hanada Y, Suganuma R, Wang H, Makimura T, Sugioka K, Midorikawa K 2012 Opt. Express 20 28893

    [29]

    Pan J L 1994 Glass Technology (Beijing: China Light Industry Press) p81 (in Chinese) [潘金龙 1994 玻璃工艺学 (北京: 中国轻工业出版社) 第81页]

    [30]

    Eaton S M, Zhang H B, Herman P R, Yoshino F 2005 Opt. Express 13 4708

    [31]

    Tzortzakis S, Sudrie L, Franco M, Prade B, Mysyrowicz A, Couairon A, Berg L 2001 Phys. Rev. Lett. 87 213902

    [32]

    Sun Q, Jiang H, Liu Y, Wu Z, Yang H, Gong Q 2005 Opt. Lett. 30 320

    [33]

    Amoruso S, Ausanio G, Bruzzese R, Vitiello M, Wang X 2005 Phys. Rev. B 7 1

    [34]

    Liao Y, Zeng B, Qiao L, Liu L, Sugioka K, Cheng Y 2014 Appl. Phys. A 114 223

    [35]

    Eaton S M, Zhang H, Ng M L, Li J, Chen W J, Ho S, Herman P R 2008 Opt. Express 16 9443

  • [1] 李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟. 三明治结构柔性储能电介质材料研究进展. 物理学报, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [2] 农洁, 张伊祎, 韦雪玲, 姜鑫鹏, 李宁, 王冬迎, 肖思洋, 陈泓廷, 张振荣, 杨俊波. 电介质/金属/电介质膜系实现可见光波段高透兼容激光隐身研究. 物理学报, 2023, 72(17): 177802. doi: 10.7498/aps.72.20230855
    [3] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [4] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, ReinholdSchuch, 黎明, 张红强, 陈熙萌. 低能电子穿越玻璃直管时倾角依赖的输运动力学. 物理学报, 2022, 71(8): 084104. doi: 10.7498/aps.71.20212335
    [5] 李维勤, 霍志胜, 蒲红斌. 电介质/半导体结构样品电子束感生电流瞬态特性. 物理学报, 2020, 69(6): 060201. doi: 10.7498/aps.69.20191543
    [6] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究. 物理学报, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [7] 封国宝, 曹猛, 崔万照, 李军, 刘纯亮, 王芳. 电子辐照电介质样品带电泄放弛豫特性研究. 物理学报, 2017, 66(6): 067901. doi: 10.7498/aps.66.067901
    [8] 钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Müller, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌. 低能电子在外层导电屏蔽的玻璃锥管中的传输. 物理学报, 2017, 66(12): 124101. doi: 10.7498/aps.66.124101
    [9] 滕建, 朱斌, 王剑, 洪伟, 闫永宏, 赵宗清, 曹磊峰, 谷渝秋. 激光加速质子束对电磁孤立子的照相模拟研究. 物理学报, 2013, 62(11): 114103. doi: 10.7498/aps.62.114103
    [10] 刘李辉, 邹宏新, 刘曲, 李玺. 199Hg+光频标的黑体辐射频移. 物理学报, 2012, 61(10): 103101. doi: 10.7498/aps.61.103101
    [11] 朱方, 张兆传, 戴舜, 罗积润. 电介质表面纵向射频电场对次级电子倍增效应的影响. 物理学报, 2011, 60(8): 084103. doi: 10.7498/aps.60.084103
    [12] 李东海, 陈发良. 超短脉冲激光在电介质材料中传输及破坏深度微观理论计算. 物理学报, 2011, 60(6): 067804. doi: 10.7498/aps.60.067804
    [13] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量. 物理学报, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [14] 丁佩, 周强, 胡伟琴, 蔡根旺, 梁二军. 利用电介质柱共振器实现电磁响应模式可转变的电磁超介质. 物理学报, 2011, 60(5): 054102. doi: 10.7498/aps.60.054102
    [15] 张涛. 光与电子之间能量交换的一个诱因. 物理学报, 2009, 58(1): 234-237. doi: 10.7498/aps.58.234
    [16] 滕建, 洪伟, 赵宗清, 巫顺超, 秦孝尊, 何颖玲, 谷渝秋, 丁永坤. 激光质子照相特性模拟研究. 物理学报, 2009, 58(3): 1635-1641. doi: 10.7498/aps.58.1635
    [17] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率. 物理学报, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [18] 何宝平, 陈 伟, 王桂珍. CMOS器件60Co γ射线、电子和质子电离辐射损伤比较. 物理学报, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [19] 程兴奎, 周均铭, 黄绮. 超晶格结构中电子的波动性. 物理学报, 2001, 50(3): 536-539. doi: 10.7498/aps.50.536
    [20] 何斌, 常铁强, 张家泰, 许林宝. 超强激光场等离子体中电子纵向运动的研究. 物理学报, 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
计量
  • 文章访问数:  5266
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-16
  • 修回日期:  2016-05-08
  • 刊出日期:  2016-06-05

/

返回文章
返回